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Continuous updates of these lecture notes can be found on the eCampus web page of the lecture
course.

Part I (consisting of sections 1 to 4) is almost entirely a summary of the corresponding chapters
in Aigner [2007] (with some contributions from Steger [2007]).
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I Combinatorics

1 Introduction

1.1 Fundamental Counting Rules

(I) For pairwise disjoint finite sets U1, . . . , Uk, we have |
⋃n
i=1 Ui| =

∑n
i=1 |Ui|.

(II) For finite sets U1, . . . , Uk, we have |U1 × · · · × Un| =
∏n

i=1 |Ui|.

(III) If there is a bijection between two sets S and T , then |S| = |T |.

Examples:

We call a set an n-set if it is a finite sets with n ∈ N elements (where N includes 0).

Proposition 1 For two n-sets A and B, the number of bijections from A to B is n!.

Proof: Let U be the set of bijections from A to B. Apply induction in n. The case n = 0
is trivial because then 0! = 1 = |U |. Let n > 0 and x ∈ A. For i ∈ B, let Ui be the set of all
bijections f from A to B with f(x) = i. Then by induction |Ui| = (n− 1)! for i ∈ B. Moreover,
we have U = ∪̇i∈BUi, so by (I) we get |U | =

∑
i∈B |Ui| = n · (n− 1)! = n!. 2

Corollary 2 The number of permutations of an n-set is n!. 2

Proposition 3 The number of mappings from a k-set A to an n-set B is nk.

Proof: There is a bijection between the set of all mappings from A to B and the set
B × · · · ×B︸ ︷︷ ︸

k times

. Thus by (III) and (II), the number of such mappings is |B|k = nk. 2

Notation: We denote the set of all mappings from A to B by BA.

Proposition 4 The number of subsets of an n-set is 2n.

Proof: For an n-set A, there is a bijection between its power set (i.e. the set of its subsets)
and the set of mappings from A to {0, 1}: For each B ⊆ A define a mapping fB : A→ {0, 1}
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by setting fB(x) = 1 if and only if x ∈ B. Then, B 7→ fB is clearly a bijection. Thus, the
statement follows from (III) and the previous proposition. 2

Notation: We denote the power set of a set A by 2A.

What does counting mean? Possible answers can be:

(i) direct, closed formula

(ii) sum

(iii) recursive formula

Example: Consider the number yn of 0-1-2-strings of length n with even number of 1s and

odd number of 2s. Then, one easily gets an answer of type (ii): yn =
∑bn−1

2
c

i=0

(
n

2i+1

)
22i. Also a

recursive solution can be found easily: yn = 3n−1 − yn−1 for n ∈ N \ {0} (see exercises for the
correctness of the formulas). We will examine methods to transform such sum and recursive
formulas into a closed formula.

1.2 Elementary Counting Coefficients

The most imporant counting coefficient is the binomial coefficient
(
n
k

)
which is defined as

the number of k-subsets of an n-set (for k, n ∈ N).

Proposition 5 Let n, k ∈ N with ≤ k ≤ n. Then:

(a)
(
n
k

)
=
(

n
n−k

)
.

(b)
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
for k ≥ 1.

(c)
(
n
k

)
= n!

k!(n−k)!
.

Proof:

(a) Trivial.

(b) Let M by an n-set and let x ∈M an arbitrary element. Then(
n

k

)
= |{N ∈ 2M | |N | = k}|

= |{N ∈ 2M | |N | = k, x ∈ N}∪̇{N ∈ 2M | |N | = k, x 6∈ N}|
= |{N ∈ 2M | |N | = k, x ∈ N}|+ |{N ∈ 2M | |N | = k, x 6∈ N}|

=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.
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(c) Induction in n+ k. n+ k = 0 is trivial, so assume n+ k > 0.(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
(n− 1)!(k + n− k)

k!(n− k)!

=
n!

k!(n− k)!
.

2

k
0 1 2 3 4 5 6

0 1
1 1 1
2 1 2 1

n
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Table 1: Pascal’s triangle

Arranged in a table, the binomial coefficients form Pascal’s triangle (see Table 1). Using 5 (b),
every entry here is simple the sum of the entry above it and the entry diagonally left above it
(if available). We consider three sums in Pascal’s triangle. The following statements can be
proven easily by induction but we will show them by “combinatorial arguments”.

• Row sums:
∑n

k=0

(
n
k

)
= 2n.

This is quite obvious as both terms denote the number of all subsets of an n-set.

• Column sums:
∑n

m=0

(
m
k

)
=
(
n+1
k+1

)
for n, k ∈ N.

For m ∈ {0, . . . , n},
(
m
k

)
is the number of ways to choose k + 1 numbers from the set

{1, . . . , n+ 1} under the condition that m+ 1 is the largest chosen number.

• Diagonal sums:
∑n

k=0

(
m+k
k

)
=
(
m+n+1

n

)
for m,n ∈ N.

For k ∈ {0, . . . , n},
(
m+k
k

)
is the number of ways to choose n numbers from the set

{1, . . . ,m+ n+ 1} under the condition that m+ k + 1 is the largest number that is not
chosen.
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Proposition 6 (Binomial theorem): For x, y ∈ R and n ∈ N, we have:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Proof: The coefficient of xkyn−k in the sum is the number of ways to choose the term x from
k of the n factors (x+ y) · · · · · (x+ y). 2

Definition 1 For n, k ∈ N let Sn,k be the number of ways to partition an n-set into k
non-empty sets (where we set S0,0 = 1). The numbers Sn,k are called Stirling numbers
of the second kind.

In particular for n > 0: Sn,0 = 0, Sn,1 = 1, Sn,2 = 2n−1 − 1.

Proposition 7 For n, k ∈ N \ {0} we have

Sn,k = Sn−1,k−1 + kSn−1,k.

Proof: Let M be an n-set and x ∈ M . The set of partitions of M in k subsets can be
decomposed in the set of partitions with the set {x} (there are Sn−1,k−1 of them) and the set
of partitions where x is an element in a set with more than one element (there are kSn−1,k of
them). 2

Of course, this recursion formula can be used to fill a table with Stirling’s numbers of the
second kind in a way similar to Pascal’s triangle (see Aigner [2007], p. 21, for a small part of
this table).

Definition 2 For n, k ∈ N, let Pn,k be the number of ways to write n as the sum of k
positive integers (without considering the order of the summands).

For example P6,3 = 3 because 6 = 4 + 1 + 1 = 3 + 2 + 1 = 2 + 2 + 2 can be written in three
different ways as a sum of three positive integers.

For n > 0, we have Pn,0 = 0, Pn,1 = 1, Pn,2 = bn
2
c.

We can also consider ordered partitions of numbers. For example there are 6 ordered 3-partitions
of 5: 3 + 1 + 1, 1 + 3 + 1, 1 + 1 + 3, 2 + 2 + 1, 2 + 1 + 2, and 1 + 2 + 2.
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Theorem 8 The number of ordered partitions of a positive integer n into k summands is(
n−1
k−1

)
.

Proof: Any positive integer number n can be written as a sum of n ones, and these ones can
be partitioned into subsequences with lengths x1, . . . , xk:

n =

n︷ ︸︸ ︷
1 + · · ·+ 1︸ ︷︷ ︸

x1

⊕ 1 + · · ·+ 1︸ ︷︷ ︸
x2

⊕ · · · ⊕ 1 + · · ·+ 1︸ ︷︷ ︸
xk

There is a one-to-one correspondence between the partitionings of the ones into subsequences
and the ordered k-partitions of n. Thus, each ordered k-partition of n is given by the choice
of the ⊕-signs. There are

(
n−1
k−1

)
ways to choose the k − 1 ⊕-signs, which implies that also the

number of ordered k-partitions of n is
(
n−1
k−1

)
. 2

1.3 Assignments

Observations:

• The number of surjective mappings from an n-set to an r-set is r!Sn,r. To see this, note
that there are Sn,r ways to partition an n-set into r preimages, and for each such partition
we get r! ways to assign the preimages to the elements of an r-set.

• The number of injective mappings from an n-set to an r-set is

rn := r(r − 1) . . . (r − n+ 1).

We call rn the n-th falling factorial of r.

Analogously, we define the n-th rising factorial of r as

rn := r(r + 1) . . . (r + n− 1).

Definition 3 A k-multiset over an n-set A is a mapping f : A → N such that∑
a∈A f(a) = k.

We can consider multisets as generalization of sets that can contain the same element more than
once. The mapping f denotes how often an element occurs (but note that f(a) = 0 is possible).
Thus we write k-multiset as {a1, . . . , ak} but in this case there can be numbers i, j ∈ {1, . . . , k}
with i 6= j but ai = aj.
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Proposition 9 The number of k-multisets over an n-set is nk

k!
=
(
n+k−1

k

)
.

Proof: There is a bijection f between the set of all k-multisets over {1, . . . , n} and the set of
all k-subsets of {1, . . . , n+ k− 1}: For a k-multiset {a1, . . . , ak} with a1 ≤ a2 ≤ · · · ≤ ak define
f({a1, . . . , ak}) as {a1, a2 + 1, a3 + 2, . . . , ak + k − 1}. It is easy to check that this is indeed a

bijection between the two sets. Since there are nk

k!
=
(
n+k−1

k

)
k-subsets of {1, . . . , n + k − 1},

this proves the proposition. 2

Proposition 10 For n, r ∈ N, we have

rn =
n∑
k=0

Sn,kr
k.

Proof: For two sets A and B, let Surj(A,B) be the set of surjective mappings from A to B.
Let N be an n-set and R and r-set. Then the number of mappings from N to R is rn, so

rn =
∑
A⊆R

|Surj(N,A)| =
r∑

k=0

∑
A⊆R,|A|=k

|Surj(N,A)| =
r∑

k=0

(
r

k

)
k!Sn,k =

r∑
k=0

Sn,kr
k =

n∑
k=0

Sn,kr
k

For the last equation, we made use of the fact that Sn,k = 0 for k > n and rk = 0 for k > r. 2

Assume that we want to count the ways to assign a set of n balls to r bins. We may or may
not be able to distinguish the the balls and we may or may not be able to distinguish the bins.
Table 2 gives an overview of the number of assignments.

elements Mapping f : N → R
distinguishable
N R

arbitrary injective surjective bijective

0 (n 6= r)
Yes Yes rn rn r!Sn,r n! (n = r)

0 (n 6= r)
No Yes rn

n!

(
r
n

) (
n−1
r−1

)
1 (n = r)

0 (r < n) 0 (n 6= r)
Yes No

∑r
k=1 Sn,k 1 (r ≥ n)

Sn,r 1 (n = r)
0 (r < n) 0 (n 6= r)

No No
∑r

k=1 Pn,k 1 (r ≥ n)
Pn,r 1 (n = r)

Table 2: Number of mappings from an n-set N to an r-set R with and without additional
constraints.
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Remarks on Table 2: Most of the entries are easy consequences of previous results. Assume
that we can distinguish the elements of R but not the elements of N . Then, the number of
all mapping from N to R is rn

n!
because this is the number of n-multisets over an r-set. The

number of surjective mappings from N to R is the number of ordered partitions of the number
n into r summands, hence it is

(
n−1
r−1

)
.

1.4 Generalized Counting Coefficients

We generalize the definitions of the rising and falling factorials by setting for r ∈ C and k ∈ N:

rk := r(r − 1)(r − 2) . . . (r − k + 1)

and
rk := r(r + 1)(r + 2) . . . (r + k − 1)

We also generalize the binomial coefficients, by setting for r ∈ C and k ∈ Z:(
r

k

)
:=

{
rk

k!
for k ≥ 0

0 for k < 0

The recursive formula from Proposition 5(b) can now be generalized to r ∈ C and k ∈ Z:(
r

k

)
=

(
r − 1

k − 1

)
+

(
r − 1

k

)
(1)

For a proof, we can simply use the definition of
(
r
k

)
but we can also apply the “polynomial

method”: For fixed k > 0 (the case k ≤ 0 is easy), both sides of equation (1) are polynomials
in r of degree k. Since we have proved (1) for any positive integer r, we know that both
polynomials have the same values at an infinite number of values of r. This means they must
be identical. This proves (1).

Proposition 11 (Vandermonde identity): For x, y ∈ C and n ∈ N, we have:(
x+ y

n

)
=

n∑
k=0

(
x

k

)(
y

n− k

)

Proof: Again, we can use the polynomial method: For x, y ∈ N, this is true because both
terms describe the number of k-subsets of an (x+ y)-set. For general values of x and y, the
statement follows because both terms are polynomials of degree n and are identical on an
infinite number of points. 2
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Proposition 12 For r ∈ C and k ∈ Z:(
−r
k

)
= (−1)k

(
r + k − 1

k

)
.

Proof: We have (−r)k = (−r)(−r−1) . . . (−r−k+1) = (−1)kr(r+1) . . . (r+k−1) = (−1)krk.
Dividing this equation be k! proves the claim. 2

Remark: Together with the equation
∑n

k=0

(
m+k
k

)
=
(
m+n+1

n

)
(see the remark concerning

Pascal’s triangle) that is valid for any m ∈ C, we get

m∑
k=0

(−1)k
(
n

k

)
=

m∑
k=0

(
k − n− 1

k

)
=

(
m− n
m

)
= (−1)m

(
n− 1

m

)
.

Hence, we have a formula for the alternating sum of a row in Pascal’s triangle. Moreover,
the equation has a combinatorial interpretation: both sides count the number of m-subsets of
{1, . . . , n− 1} if m is even (or minus this number if m is odd).

1.5 Permutations

An n-permutation is a bijection π : {1, . . . , n} → {1, . . . , n}.

For a permutation π, a cycle is a vector (i1, i2, . . . , it) such that π(ij) = ij+1 for j ∈ {1, . . . , t−1}
and π(it) = i1. Hence a fixed pointed corresponds to a cycle of length 1.

Definition 4 For n, k ∈ N let sn,k be the number of n-permutations with k cycles
(where we set s0,0 = 1). The numbers sn,k are called Stirling numbers of the first kind.

Obviously, for n > 0 we have: sn,0 = 0, sn,1 = (n − 1)!. As for the Stirling numbers of the
second kind, we get a recursion formula.

Proposition 13 For n, k ∈ N \ {0} we have:

sn,k = sn−1,k−1 + (n− 1)sn−1,k.

Proof: There are sn−1,k−1 n-permutations with k cycles where n is a fixed point and (n −
1)sn−1,k n-permutations with k cycles where n is not a fixed point. 2

For the Stirling numbers of the second kind, also the number Sn,2 (for n > 1) was easy to
compute. To do this for the Stirling numbers of the first kind, we need the harmonic numbers.
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Definition 5 For n ∈ N we define Hn :=
∑n

i=1
1
i
. We call Hn the n-th harmonic

number.

It is a well-know fact (that can easily be proved by using the fact that the derivative of x 7→ lnx
is 1

x
) that Hn ∈ Θ(lnn), More precisely, we have for positive integers n:

lnn+
1

n
≤ Hn ≤ lnn+ 1.

Proposition 14 For n ∈ N \ {0} we have sn,2 = (n− 1)!Hn−1.

Proof: Induction in n. For n = 1 we have 0 on both sides of the equation, so let n > 1. Then:

sn,2
(n− 1)!

=
sn−1,1

(n− 1)!
+

(n− 1)sn−1,2

(n− 1)!
=

(n− 2)!

(n− 1)!
+

sn−1,2

(n− 2)!
=

1

n− 1
+Hn−2 = Hn−1.

2

There is a surprising connection between the two kinds of Stirling numbers: they are coefficients
that allow to switch between the bases {r0, r1, r2, . . . } and {r0, r1, r2, . . . } of the vector space
of the polynomials. We know already the following equation for n, r ∈ N

rn =
n∑
k=0

Sn,kr
k.

By the polynomial method we can generalize this result to r ∈ C. For the other direction (i.e.
for writing rn as a linear function of the polynomials rk, we can use the Stirling numbers of th
first kind:

Proposition 15 For n ∈ N and r ∈ C, w have:

rn =
n∑
k=0

(−1)n−ksn,kr
k.

Proof: Induction in n. For n = 0, both sides of the equation equal 1. Hence assume n > 0.
We generalize the definition of sn,k to negative values of k by setting sn,k = 0 for k < 0 and get:

rn = (r − n+ 1)rn−1

= (r − n+ 1)
n−1∑
k=0

(−1)n−1−ksn−1,kr
k

11



=
n−1∑
k=0

(−1)n−1−ksn−1,kr
k+1 +

n−1∑
k=0

(−1)n−k(n− 1)sn−1,kr
k

=
n∑
k=1

(−1)n−ksn−1,k−1r
k +

n∑
k=0

(−1)n−k(n− 1)sn−1,kr
k

=
n∑
k=0

(−1)n−k(sn−1,k−1r
k + (n− 1)sn−1,kr

k)

=
n∑
k=0

(−1)n−ksn,kr
k

2

We categorize permutations not only be the number of cycles but also on the number of cycles
of a certain length.

Notation: For a permutation π, let bi(π) be the number of cycles of length i (for i ∈ {1, . . . , n}),
and let b(π) :=

∑n
i=1 bi(π) be the total number of cycles. The type of a permutation π is

the formal term t(π) = 1b1(π)2b2(π) . . . nbn(π) where we skip the numbers i with bi(π) = 0.

Observation:
∑n

i=1 ibi(π) = n.

Proposition 16 There are
∑n

k=0 Pn,k types of n-permutations.

Proof: For every type 1b2(π)2b2(π) . . . nbn(π) we find a representation of n as a sum of b(π)
positive integers where the number i occurs pi(π) times as a summand. This leads to a bijection
between the set of types of n-permutations and the set of partitions of n. 2

Proposition 17 There are
n!

b1! . . . bn!1b12b2 . . . nbn

n-permutations of type 1b12b2 . . . nbn.

Proof: First consider empty cycles:

(·)(·) . . . (·)︸ ︷︷ ︸
b1 times

(··)(··) . . . (··)︸ ︷︷ ︸
b2 times

(· · ·)(· · ·) . . . (· · ·)︸ ︷︷ ︸
b3 times

. . .

There are n! ways to fill these cycles with numbers from {1, . . . , n} (without repeating numbers).
Moreover, each such assignment yields an n-permutation of type 1b12b2 . . . nbn . However, for
each i ∈ {1, . . . , n}, all assignments that differ just in the order of the bi cycles lead to the
same permutation. And for each cycle of length i there are i assignments giving the same
permutation because there are i ways to choose the first element in the cycle. Hence, for each
n-permutation π, there are b1! . . . bn!1b12b2 . . . nbn assignments that encode π. 2
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In particular, we have

sn,k =
∑

(b1,...,bn)

n!

b1! . . . bn!1b1 . . . nbn

where we sum over all vectors (b1, . . . , bn) with
∑n

i=1 ibi = n and
∑n

i=1 bi = k.

Similarly:

n! =
∑

(b1,...,bn)

n!

b1! . . . bn!1b1 . . . nbn

where we sum over all vectors (b1, . . . , bn) with
∑n

i=1 ibi = n.

1.6 Further Combinatorial Techniques

Inclusion-exclusion principle:

Proposition 18 (Inclusion-exclusion principle) Let A1, . . . , An be finite sets. Then:∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
r=1

(−1)r−1
∑

1≤i1<···<ir≤n

∣∣∣∣∣
r⋂
j=1

Aij

∣∣∣∣∣ .
Proof: For each a ∈

⋃n
i=1 Ai, we have to show that a is counted on the right-hand side of the

equation exactly once. Let k := |{i ∈ {1, . . . , n} | a ∈ Ai}|. Then a is counted
(
k
r

)
times in the

sum
∑

1≤i1<···<ir≤n |
⋂r
j=1Aij | (for r ∈ {1, . . . , n}). Hence in total, a is counted

∑k
r=1(−1)r−1

(
k
r

)
times. By the binomial theorem, we have

0 = (−1 + 1)k =
k∑
r=0

(
k

r

)
(−1)r1k−r = 1−

k∑
r=1

(−1)r−1

(
k

r

)
.

Thus,
∑k

r=1(−1)r−1
(
k
r

)
= 1, which means that a is counted exactly once in the sum on the

right-hand side. 2

Proposition 19 The number of fixed-point-free n-permutations is Dn := n!
∑n

r=0
(−1)r

r!
.

Proof: Let Ai be the set of all n-permutations π with π(i) = i. Thus, the number of
fixed-point-free n-permutations is

n!−

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ = n!−
n∑
r=1

(−1)r−1
∑

1≤i1<···<ir≤n

∣∣∣∣∣
r⋂
j=1

Aij

∣∣∣∣∣ .
13



For and 1 ≤ i1 < · · · < ir ≤ n, we obviously have |
⋂r
j=1Aij | = (n− r)!. Moreover, there are(

n
r

)
ways to choose integers i1, . . . , ir with 1 ≤ i1 < · · · < ir ≤ n (for r ∈ {1, . . . , n}). Thus the

number of fixed-point free n-permutations is

n!−
n∑
r=1

(
n

r

)
(−1)r−1(n− r)! =

n∑
r=0

(
n

r

)
(−1)r(n− r)!

=
n∑
r=0

n!

r!(n− r)!
(−1)r(n− r)!

= n!
n∑
r=0

(−1)r

r!

2

The numbers Dn are called the derangement numbers. We have limn→∞
∑n

r=0
(−1)r

r!
= 1

e
,

so for large n the fraction of the fixed-point-free n-permutations among all n-permutations is
approximately 1

e
.

Another application of the inclusion-exclusion principle:

Proposition 20 For n ∈ N, the number of ways to write n as a sum of odd natural
numbers is the number of ways to write n as a sum of different positive integers.

Proof: For n ∈ N \ {0} let p(n) =
∑n

k=1 Pn,k be the number of ways to write n as a sum of
positive integers. Then, for numbers 1 ≤ i1 < · · · < ir ≤ n, the number of partitions where
these numbers occur twice is p(n− 2

∑r
j=1 ij). However, this is also the number of partitions

where the even numbers 2ii, . . . , 2ir occur. Hence, both for the number of partitions in odd
summands and for the number of partitions in different summands we get:

p(n)−
n∑
r=1

(−1)r−1
∑

1≤i1<···<ir≤n

p

(
n− 2

r∑
j=1

ij

)
.

2

Doubly counting:

The principle of doubly counting is based on the following simple observation for a relation
R ⊆ S × T we can count the pairs in R in two different ways and get:∑

s∈S

|{t ∈ T | (s, t) ∈ R}| =
∑
t∈T

|{s ∈ S | (s, t) ∈ R}|

Examples:

• We want to compute the average number of divisors of the integers in {1, . . . , n}. To this
end, we set S = T = {1, . . . , n} and define the relation R ⊆ S × T by (s, t) ∈ R :⇔ t|s.

14



Then, the average number of divisors is

1

n

∑
s∈S

|{t ∈ {1, . . . , n} : t|s}| =
1

n

∑
s∈S

|{t ∈ T : (s, t) ∈ R}|

=
1

n

∑
t∈T

|{s ∈ S : (s, t) ∈ R}|

=
1

n

∑
t∈T

|{s ∈ {1, . . . , n} : t|s}|

=
1

n

∑
t∈T

⌊n
t

⌋
∈

[(
n∑
i=1

1

i

)
− 1,

n∑
i=1

1

i

]

Hence, the average number of divisors of the numbers in {1, . . . , n} is approximately
Hn =

∑n
i=1

1
i

which is Θ(lnn).

• Let G be an undirected graph. For S = V (G) and T = E(G) we define the relation
R ⊆ V (G)× E(G) by (v, e) ∈ R :⇔ v ∈ e. Then doubly counting proves

∑
e∈E(G) |{v ∈

V (G) | v ∈ e}| =
∑

v∈V |{e ∈ E(G) | v ∈ e}|, so 2|E(G)| =
∑

v∈V (G) |δG(v)|.

• Claim: A simple undirected graph G that does not contain a cycle of length 4 has at
most bn

4
(1 +

√
4n− 3)c edges (where n = |V (G)|).

Proof of the claim: For S = V (G) and T = {{v, w} ⊆ V (G) | v 6= w} we define the
relation R ⊆ S × T by

(u, {v, w}) ∈ R :⇔ {u, v} ∈ E(G) and {u,w} ∈ E(G).

Then, doubly counting leads to (for u ∈ V (G), δG(u), denotes the set of edges incident to
u):∑
s∈S

|{t ∈ T | (s, t) ∈ R}| =
∑

u∈V (G)

(
|δG(u)|

2

)
=
∑
t∈T

|{s ∈ S | (s, t) ∈ R}| ≤ |T | =
(
n

2

)

where the inequality follows from the fact that each two nodes v, w can have at most one
common neighbour (otherwise we had a cycle of length 4 in G). Thus,∑

u∈V (G)

|δG(u)|2 ≤ n(n− 1) +
∑

u∈V (G)

|δG(u)|

Moreover, with α(u) := 2m
n
− |δG(u)| for u ∈ V (G) (where m = |E(G)|) we get

∑
u∈V (G)

|δG(u)|2 =
∑

u∈V (G)

(
2m

n
− α(u)

)2

=
∑

u∈V (G)

(
2m

n

)2

− 4m

n

∑
u∈V (G)

α(u) +
∑

u∈V (G)

α(u)2 ≥ 4m2

n

because
∑

u∈V (G) α(u) = 0. Hence, 4m2

n
≤ n(n− 1) + 2m, which proves the claim.
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(Generalized) pigeon hole principle:

For an n-set N and an r-set R with n > r and a mapping f : N → R there is an a ∈ R with
|f−1(a)| ≥ bn−1

r
c+ 1. In particular there must be an a ∈ R with |f−1(a)| ≥ 2.

This principle is obviously true because otherwise we had n =
∑

a∈R |f−1(a)| ≤ rbn−1
r
c < n.

Simple Applications: Let a1, . . . , an (with n ≥ 1) be a finite sequence of positive integers.

• Claim: There are numbers k, l ∈ {1, . . . , n} such that
∑l

i=k ai is an integral multiple of
n.
Proof: Let N = {

∑l
i=1 ai | l ∈ {0, . . . , n}} and R = {0, . . . , n − 1}. We define f(m)

to be the remainder of m for division by n. Since |N | = n + 1 > n = |R|, there are
numbers m, l ∈ {0, . . . , n} with m < l and f(

∑m
i=1 ai) = f(

∑l
i=1 ai). Thus,

∑l
i=m+1 ai is

an integral multiple of n.

• Claim: If {a1, . . . , an} ⊆ {1, . . . , 2n− 2}, then there are numbers i, j ∈ {1, . . . , n} with
i 6= j such that ai is an integral multiple of aj.
Proof: Let N = {a1, . . . , an} and R = {2i− 1 | i ∈ {1, . . . , n− 1}}. We can write each
number ai in a unique way as ai = 2kibi where bi is an odd number. We define f : N → R
by f(ai) = bi. Then, by the pigeon-hole principle, there are numbers ai and aj with i 6= j
and f(ai) = f(aj), i.e. ai = 2kibi and aj = 2kjbi. W.l.o.g. assume ki ≥ kj. Then ai is an
integral multiple of aj.

• Claim: If the numbers ai are pairwise different and n > k · l for some positive integers
l, k, then there is an increasing subsequence ai1 < ai2 < · · · < aik+1

(i1 < i2 < · · · < ik+1)
of length k + 1 or a decreasing subsequence ai1 > ai2 > · · · > ail+1

(i1 < i2 < · · · < il+1)
of length l + 1.
Proof: Assume that there is no increasing subsequence of length k+1. For i ∈ {1, . . . , n}
we define ti to be the length of the longest increasing subsequence starting with ai. Hence,
by setting f(ai) = ti, we get a mapping f : {a1, . . . , an} → {1, . . . , k}. Thus there must be
an j ∈ {1, . . . , k} with |f−1(j)| > l. Obviously, the elements of f−1(j) form a decreasing
subsequence.

The following theorem can be considered as a generalization of the pigeonhole principle. Here
the set of edges of complete graph on n nodes is mapped to a 2-set determining if the edge
is contained in a specific graph G with |V (G)| = n or not. The theorem not just states that
there will be “many” edges inside the graph G or “many” edges outside the graph G but also
specifies that there must be “large” complete graphs in G or its complement. In a graph G, we
call a clique a set of nodes that are pairwise connnected by edges and a stable set a set of
nodes such that no two nodes in this are connected by an edge.

Theorem 21 (Ramsey’s Theorem): For k, l ∈ N \ {0}, there is a smallest number R(k, l)
such that any graph with at least R(k, l) nodes contains a clique of size k or a stable set
of size l.
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Proof: Induction on k + l. If k = 1 or l = 1, then obviously R(k, l) = 1. Hence, we assume
k > 1 and l > 1.

Claim: R(k, l) ≤ R(k − 1, l) +R(k, l − 1).

Proof of the claim: Let G be a graph with R(k − 1, l) + R(k, l − 1) nodes, and let v ∈ V (G)
be a node of G. Let X be the set of neighbours of v in G and Y := V (G) \ (X ∪ {v}). Thus,
|X| ≥ R(k− 1, l) or |Y | ≥ R(k, l− 1). If |X| ≥ R(k− 1, l), then X contains a stable set of size
l (so we are done) or a clique of size k − 1. Since all elements of X are neighbours of v, such
a clique can be extended by adding v to a clique of size k, so, again, we a re done. The case
|Y | ≥ R(k, l − 1) can be handled analogously. 2

The number R(k, l) are called Ramsey numbers.

In particular for m > 1: R(2,m) = R(m, 2) = m.

Theorem 22 For k, l ∈ N \ {0} we have R(k, l) ≤
(
k+l−2
k−1

)
.

Proof: For k = 1, we have R(1, l) ≤
(
l−1
0

)
= 1. For l = 1, we have R(k, l) ≤

(
k−1
k−1

)
= 1. In

general, we get:

R(k, l) ≤ R(k − 1, l) +R(k, l − 1) ≤
(
k + l − 3

k − 2

)
+

(
k + l − 3

k − 1

)
=

(
k + l − 2

k − 1

)
.

2

In general, the excat values R(k, l) are difficult to compute. But, for example, it is easy to
see that R(3, 3) = 6. The inequality R(3, 3) ≤

(
4
2

)
= 6 follows from the previous theorem.

Moreover, the graph C5 which is the cycle of length 5 shows that R(3, 3) > 5 since it contains
neither a clique nor a stable set of size 3.

2 Computation of Sums

2.1 Sums: Direct Methods

Induction:

Most induction proofs of for formulas computing sums are more or less trivial, and we have
already seen several examples. As an example for an induction that requires (at least to simplify
the proof) an additional idea, we prove the arithmetic-geometric inequality though this is not
really a statement on sum. The arithmetic-geometric inequality says that for non-negative real
number a1, . . . , an, we have

n
√
a1a2 . . . an ≤

a1 + · · ·+ an
n

.

17



Equivalenty, we show the following statement that we call (Pn): For non-negative real number
a1, . . . , an, we have

a1a2 . . . an ≤
(
a1 + · · ·+ an

n

)n
.

The case (P1) is trivial but we also show the statement explicitly for n = 2. It is equivalent to
4a1a2 ≤ a2

1 + 2a1a2 + a2
2, which in turn is equivalent to 0 ≤ a2

1− 2a1a2 + a2
2 = (a1− a2)2, so it is

true.

For the induction step, we avoid showing directly that (Pn+1) follows from (Pn). Instead, we
show the following two statements (which is sufficient):

(a) (Pn) ⇒ (Pn−1)

(b) ((Pn) ∧ (P2)) ⇒ (P2n)

For (a), we compute for non-negative real number a1, . . . , an−1:(
n−1∏
k=1

ak

)
n−1∑
k=1

ak
n− 1

(Pn)

≤

(∑n−1
k=1 ak +

∑n−1
k=1

ak
n−1

n

)n

=

(
n
∑n−1

k=1 ak
n(n− 1)

)n

=

(
1

n− 1

)n(n−1∑
k=1

ak

)n

and thus
n−1∏
k=1

ak ≤
(

1

n− 1

)n−1
(
n−1∑
k=1

ak

)n−1

For (b), we compute for non-negative real number a1, . . . , a2n:

2n∏
k=1

ak =

(
n∏
k=1

ak

)(
2n∏

k=n+1

ak

)
(Pn)

≤

(
n∑
k=1

ak
n

)n( 2n∑
k=n+1

ak
n

)n

=

(
n∑
k=1

ak
n

2n∑
k=n+1

ak
n

)n

(P2)

≤

(∑n
k=1

ak
n

+
∑2n

k=n+1
ak
n

2

)2
n

=

(∑2n
k=1 ak
2n

)2n

Index transformation:

Make use of the observation that sums can be computed in many different ways:

n∑
k=m

ak =
n+i∑

k=m+i

ak−i =
n−i∑

k=m−i

ak+i =
n−m∑
k=0

am+k =
n−m∑
k=0

an−k

For example, assume that we want to compute Sn =
∑n

k=0 ka. Then, Sn =
∑n

k=0(n− k)a, so
2Sn =

∑n
k=0 ka+

∑n
k=0(n− k)a =

∑n
k=0 na = (n+ 1)na, which implies Sn = 1

2
(n+ 1)na.
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Isolating terms:

For a sum Sn =
∑n

k=0 ak isolate the first and the last terms from Sn+1: Sn+1 = Sn + an+1 =
a0 +

∑n+1
k=1 ak = a0 +

∑n
k=0 ak+1

Examples:

• Consider the (finite) geometric sum Sn =
∑n

k=0 a
k. We get

Sn+1 = Sn + an+1 = 1 +
n∑
k=0

ak+1 = 1 + a
n∑
k=0

ak = 1 + aSn.

Thus, Sn + an+1 = 1 + aSn, so Sn = an+1−1
a−1

(if a 6= 1).

• Let Sn =
∑n

k=0 k2k. Then,

Sn+1 = Sn + (n+ 1)2n+1 = 0 +
n∑
k=0

(k + 1)2k+1 = 2
n∑
k=0

k2k + 2
n∑
k=0

2k = 2Sn + 2n+2 − 2,

so Sn = (n− 1)2n+1 + 2.

2.2 Difference and Sum Operators

Our goal in this section is again to solve sums. Sums can be seen as integrals over step functions.
Therefore, we will apply techniques from integral calculus to the computations of sums. In
order to develop a discrete analogon to integrals, we first have to develop a discrete analogon
to the differential calculus.

Definition 6 For a ∈ Z the translation operator Ea : RZ → RZ maps f ∈ RZ to Eaf
where Eaf(x) = f(x+ a) for all x ∈ Z.

Hence I := E0 is the identity.

For two operators, P,Q : RZ → RZ, we can define their sum by (P + Q)f = Pf + Qf and a
multiplication by a scalar α by setting (αP )f = α(Pf). We denote their composition by QP ,
so (QP )f = Q(Pf).

Moreover, we define ∆ : RZ → RZ as ∆ = E1 − I, so for f : Z → R we have ∆f(x) =
f(x+ 1)− f(x). This is the forward difference operator. Similarly, we define ∇ : RZ → RZ

as ∇ = I − E−1, so for f : Z→ R we have ∇f(x) = f(x)− f(x− 1). This is the backward
difference operator.

Examples: For n ∈ N :

∆xn = (x+ 1)n − xn = (x+ 1)xn−1 − (x− n+ 1)xn−1 = nxn−1
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and
∇xn = xn − (x− 1)n = (x+ n− 1)xn−1 − (x− 1)xn−1 = nxn−1

We generalize the falling and rising factorials to negative exponents by setting (for n ∈ N \ {0}):

x−n :=
1

(x+ 1) . . . (x+ n)
,

and

x−n :=
1

(x− 1) . . . (x− n)
.

Theorem 23 For n ∈ Z, we have:

∆xn = nxn−1

and
∇xn = nxn−1

Proof: For n ≥ 0 we have already proved the statement. The rest follows from

∆x−n = (x+ 1)−n − x−n

=
1

(x+ 2) . . . (x+ n+ 1)
− 1

(x+ 1) . . . (x+ n)

=
x+ 1

(x+ 1) . . . (x+ n+ 1)
− x+ n+ 1

(x+ 1) . . . (x+ n+ 1)

= (x+ 1)x−n−1 − (x+ n+ 1)x−n−1

= −nx−n−1

and

∇x−n = x−n − (x− 1)−n

=
1

(x− 1) . . . (x− n)
− 1

(x− 2) . . . (x− n− 1)

=
x− n− 1

(x− 1) . . . (x− n− 1)
− x− 1

(x− 1) . . . (x− n− 1)

= (x− n− 1)x−n−1 − (x− 1)x−n−1

= −nx−n−1

2

Definition 7 For two mappings f, g : Z → R, we call f a (discrete) antiderivative
of g, if ∆f = g. We write f =

∑
g and call f an indefinite sum.
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Thus:
∆f = g ⇔ f =

∑
g.

Theorem 24 If f is an antiderivative of g then for all a, b ∈ Z with a < b:

b∑
k=a

g(k) = f(b+ 1)− f(a).

Proof: Since ∆f = g we have f(k + 1)− f(k) = g(k) for all k ∈ Z. Thus,

b∑
k=a

g(k) =
b∑

k=a

(f(k + 1)− f(k)) = f(b+ 1)− f(a).

2

Notation: For f =
∑
g and a, b ∈ Z with a < b, we write

∑b+1
a g(x) := f(x)|b+1

a :=
f(b+ 1)− f(a). Hence:

b+1∑
a

g(x) =
b∑

k=a

g(k).

Of course,
∑
g is defined only up to an additional constant. Nevertheless, we will use

∑
like

an operator RZ → RZ.

Observation: Both ∆ and
∑

are linear operators, i.e. ∆(αf + βg) = α∆f + β∆g and∑
(αf + βg) = α

∑
f + β

∑
g for scalars α and β and functions f and g.

Proposition 25 For n ∈ Z, we have for all x ∈ N \ {0}:

∑
xn =

{
xn+1

n+1
n 6= −1

Hx n = −1

Proof: Since ∆xn+1 = (n+ 1)xn, we have
∑
xn = xn+1

(n+1)
if n 6= −1. It remains to find

∑
x−1.

A function f with f =
∑
x−1 satisfies 1

x+1
= x−1 = ∆f = f(x+ 1)− f(x). Thus Hx =

∑x
i=1

1
i

is an antiderivative of x−1. This proves the proposition. 2

Application: Compute
∑n

k=0 k
2: We have x2 = x(x− 1) + x = x2 + x1, so

n∑
k=0

k2 =
n+1∑

0

x2 =
n+1∑

0

x2 +
n+1∑

0

x1 =
x3

3
|n+1
0 +

x2

2
|n+1
0

=
(n+ 1)3

3
+

(n+ 1)2

2
=

(n+ 1)n(n− 1)

3
+

(n+ 1)n

2
=
n(n+ 1

2
)(n+ 1)

3
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More general: xm =
∑m

k=0 Sm,kx
k. Therefore:

n∑
k=0

km =
n+1∑

0

xm =
n+1∑

0

(
m∑
k=0

Sm,kx
k

)
=

m∑
k=0

Sm,k

n+1∑
0

xk =
m∑
k=0

Sm,k
xk+1

k + 1
|n+1
0 =

m∑
k=0

Sm,k
(n+ 1)k+1

k + 1
.

Further examples:

• For c ∈ R we have ∆cx = cx+1 − cx = (c − 1)cx. Hence, for c 6= 1:
∑
cx = cx

c−1
. In

particular, for c = 2 we get ∆2x = 2x and
∑

2x = 2x.

• For x ∈ R and m ∈ Z we have
(
x+1
m+1

)
=
(
x
m

)
+
(

x
m+1

)
. Thus ∆

(
x

m+1

)
=
(
x
m

)
and∑(

x
m

)
=
(

x
m+1

)
.

For a function f : Z→ R, we have

∆nf(x) = (E − I)nf(x) =
n∑
k=0

(−1)n−k
(
n

k

)
Ekf(x) =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ k)

In particular, for x = 0:

∆nf(0) =
n∑
k=0

(−1)n−k
(
n

k

)
f(k) (2)

Theorem 26 (Newton representation of polynomials): For a polynomial f of degree n,
we have

f(x) =
n∑
k=0

∆kf(0)

k!
xk

Proof: Since the polynomials xk are a basis of the space of polynomials, we can write f in a

unique way as f(x) =
∑n

k=0 bkx
k. It remains to show that bk = ∆kf(0)

k!
(for {k ∈ 0 . . . , n}).

We have ∆kxi = i(i− 1) . . . (i− k + 1)xi−k = ikxi−k. Hence:

∆kf(x) = ∆k

n∑
i=0

bix
i =

n∑
i=0

bii
kxi−k

Thus ∆kf(0) =
∑n

i=0 bii
k0i−k = bkk

k because ik = 0 for i < k and 0i−k = 0 for i > k. Since
kk = k!, this proves the theorem. 2

Corollary 27 For n, k ∈ N, we have:

Sn,k =
1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in

22



Proof: We know that xn =
∑n

k=0 Sn,kx
k, so by the previous theorem we have, with f(x) = xn :

Sn,k =
∆kf(0)

k!
=

1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in.

For the last equation, we applied (2). 2

Theorem 28 (Partial summation) For functions u, v : Z→ R, we have:∑
(u∆v) = uv −

∑
((Ev)∆u)

Proof: We have

∆uv(x) = u(x+ 1)v(x+ 1)− u(x)v(x)

= u(x)(v(x+ 1)− v(x)) + v(x+ 1)(u(x+ 1)− u(x))

= u(x)∆v(x) + Ev(x)∆u(x),

so ∆uv = u∆v + (Ev)∆u. Applying the operator
∑

to this equation proves the statement of
the theorem. 2

Applications:

• Compute
n∑
k=0

k2k.

Thus, we want to compute
∑
x2x. We apply the theorem with u(x) = x and ∆v(x) = 2x,

so ∆u(x) = 1 and v(x) = 2x. This leads to:

n∑
k=0

k2k =
n+1∑

0

x2x = x2x|n+1
0 −

n+1∑
0

2x+1 = x2x|n+1
0 − 2 · 2x|n+1

0

= (n+ 1)2n+1 − 2 · 2n+1 + 2 = (n− 1)2n+1 + 2

• Compute
n∑
k=0

Hk.

Apply the theorem with u(x) = Hx and ∆v(x) = 1, so ∆u(x) = 1
1+x

and v(x) = x. This
leads to:

n∑
k=1

Hk =
n+1∑

1

Hxx
0 = Hxx|n+1

1 −
n+1∑

1

(x+ 1)
1

1 + x
= Hn+1(n+ 1)− 1− x|n+1

1

= Hn+1(n+ 1)− 1− (n+ 1) + 1 = (n+ 1)(Hn+1 − 1)

• Compute
n∑
k=1

(
k
m

)
Hk (for m ∈ N \ {0}).

Apply the theorem with u(x) = Hx and ∆v(x) =
(
x
m

)
, so ∆u(x) = 1

1+x
and v(x) =

(
x

m+1

)
.
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This leads to:

n∑
k=1

(
k

m

)
Hk =

n+1∑
1

(
x

m

)
Hx = Hx

(
x

m+ 1

)
|n+1
1 −

n+1∑
1

(
x+ 1

m+ 1

)
1

1 + x

= Hn+1

(
n+ 1

m+ 1

)
−H1

(
1

m+ 1

)
− 1

m+ 1

n+1∑
1

(
x

m

)
= Hn+1

(
n+ 1

m+ 1

)
− 1

m+ 1

(
x

m+ 1

)
|n+1
1

= Hn+1

(
n+ 1

m+ 1

)
− 1

m+ 1

((
n+ 1

m+ 1

)
−
(

1

m+ 1

))
=

(
n+ 1

m+ 1

)(
Hn+1 −

1

m+ 1

)

2.3 Inversions

Definition 8 A basis sequence is a sequence of polynomials (pi)i∈N = p0(x), p1(x), . . .
where pi is a polynomial of degree i (for i ∈ N).

Examples of basis sequences are (xn)n∈N and (xn)n∈N.

It is easy to check that if p0(x), p1(x), . . . is a basis sequence and p(x) is a polynomial degree n
then there are unique numbers a0, . . . , an such that p(x) =

∑n
k=0 akpk(x).

Now let (pn)n∈N and (qn)n∈N be two basis sequences. Then there unique numbers an,k and bn,k
for k ≤ n with

qn(x) =
n∑
k=0

an,kpk(x)

and

pn(x) =
n∑
k=0

bn,kqk(x)

For k > n we set all numbers an,k and bn,k to 0. The numbers an,k and bn,k are called connection
coefficients.

We have

qn(x) =
n∑
k=0

an,kpk(x) =
n∑
k=0

an,k

k∑
m=0

bk,mqm(x) =
n∑

m=0

qm(x)
n∑

k=m

an,kbk,m

Hence
n∑

k=m

an,kbk,m =
n∑
k=1

an,kbk,m =

{
1 if n = m
0 if n 6= m
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Therefore, for An = (ai,j)1≤i,j≤n and Bn = (bi,j)1≤i,j≤n, we have AnBn = In where In is the
n× n-identity matrix.

Theorem 29 Let (pn)n∈N and (qn)n∈N be two basis sequences with connection coefficients
an,k and bn,k. Then for two sequences (un)n∈N and (vn)n∈N the following statements are
equivalent:

∀n ∈ N vn =
n∑
k=0

an,kuk

and

∀n ∈ N un =
n∑
k=0

bn,kvk

Proof: Let n ∈ N. The matrices An and Bn are inverse to each other, so for any two vectors
u = (u1, . . . , un) and v = (v1, . . . , vn), we have

v = Anu ⇔ u = Bnv

2

Examples:

• Stirling numbers:
Consider the basis sequences (xn)n∈N and (xn)n∈N. We know from Proposition 10 and
Proposition 15 that

xn =
n∑
k=0

Sn,kx
k.

and

xn =
n∑
k=0

(−1)n−ksn,kx
k.

Thus the numbers Sn,k and (−1)n−ksn,k are the connection coefficients of the basis
sequences (xn)n∈N and (xn)n∈N. This gives us∑

k≥0

Sn,k(−1)k−msk,m =

{
1 if n = m
0 if n 6= m

Moreover, for any sequences (un)n∈N and (vn)n∈N we have(
∀n ∈ N vn =

n∑
k=0

Sn,kuk

)
⇔

(
∀n ∈ N un =

n∑
k=0

(−1)n−ksn,kvk

)

This equivalence is called Stirling inversion.
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• Binomial coefficients:
For n ∈ N, we have by Proposition 6:

xn = ((x− 1) + 1)n =
n∑
k=0

(
n

k

)
(x− 1)k

and

(x− 1)n =
n∑
k=0

(−1)n−k
(
n

k

)
xk

Therefore, the numbers
(
n
k

)
and (−1)n−k

(
n
k

)
are the connections coefficients of the basis

sequences ((x− 1)n)n∈N and (xn)n∈N.

This implies ∑
k≥0

(
n

k

)
(−1)k−m

(
k

m

)
=

{
1 if n = m
0 if n 6= m

Moreover, for any sequences (un)n∈N and (vn)n∈N we have(
∀n ∈ N vn =

n∑
k=0

(
n

k

)
uk

)
⇔

(
∀n ∈ N un =

n∑
k=0

(−1)n−k
(
n

k

)
vk

)

This equivalence is called binomial inversion. By replacing un by (−1)nun, we get a
more symmetric version:

For any sequences (un)n∈N and (vn)n∈N we have(
∀n ∈ N vn =

n∑
k=0

(−1)k
(
n

k

)
uk

)
⇔

(
∀n ∈ N un =

n∑
k=0

(−1)k
(
n

k

)
vk

)

Application: We consider again the derangement numbers Dn. We have

n! =
n∑
k=0

(
n

k

)
Dk

because
(

n
n−k

)
Dk =

(
n
k

)
Dk is the number of n-permutations with exactly n−k fixed points.

By applying the first version of the binomial inversion (with vn = n! and uk = Dk), we get

Dn =
n∑
k=0

(−1)n−k
(
n

k

)
k! = n!

n∑
k=0

(−1)n−k

(n− k)!
= n!

n∑
k=0

(−1)k

k!
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3 Solving Recursions

3.1 Linear Recursions of Depth 1

Theorem 30 Let T0, T1, . . . be a sequence that is given by numbers β and an, bn with
an 6= 0 (n ∈ N \ {0}) and the following recursion:

• T0 = β,

• Tn = anTn−1 + bn for n ≥ 1.

Then, for all n ∈ N:

Tn =
n∏
k=1

ak

(
n∑
k=1

bk∏k
i=1 ai

+ T0

)
.

Proof: Induction in n. For n = 0 the statement obviously holds, so assume n > 1. Then

Tn = anTn−1 + bn = an

n−1∏
k=1

ak

(
n−1∑
k=1

bk∏k
i=1 ai

+ T0

)
+ bn

=
n∏
k=1

ak

(
n−1∑
k=1

bk∏k
i=1 ai

+ T0

)
+ bn =

n∏
k=1

ak

(
n∑
k=1

bk∏k
i=1 ai

+ T0

)
.

2

Remark: The recursion in the theorem above is a linear inhomogeneous recursion (where the
term “inhomogeneous” refers to the fact that the numbers bn may be non-zero).

Corollary 31 Let T0, T1, . . . be a sequence that is given by numbers a, b and β with a 6= 1
and the following recursion:

• T0 = β,

• Tn = aTn−1 + b for n ≥ 1.

Then, for all n ∈ N:

Tn = anT0 + b
an − 1

a− 1
.

Proof: For a = 0, we have T0 = β and Tn = b for all n ∈ N \ {0}, so the statement holds.
For a 6= 0, the statement follows from the previous theorem and the fact that

∑n
k=1

1
ak

=

−1 +
∑n

k=0
1
ak

= −1 +
( 1
a)

n
−a

1−a =
1−( 1

a)
n

a−1
, so anb

∑n
k=1

1
ak

= ba
n−1
a−1

. 2
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As an application, we again consider the derangement numbers. We have

Dn = (n− 1)(Dn−1 +Dn−2)

because the set of fixed-point free n-permutations can be decomposed into (n− 1)Dn−2 permu-
tations where 1 is contained in a cycle of length 2 and (n− 1)Dn−1 permutations where 1 is
contained in a cycle of length at least 3.

Thus
Dn − nDn−1 = −(Dn−1 − (n− 1)Dn−2) = Dn−2 − (n− 2)Dn−3

and so on. Hence
Dn − nDn−1 = (−1)n−1(D1 −D0) = (−1)n.

Therefore, for n ∈ N \ {0}:
Dn = nDn−1 + (−1)n

This leads once again to

Dn = n!

(
n∑
k=1

(−1)k

k!
+ 1

)
= n!

n∑
k=0

(−1)k

k!

3.2 Generating Functions

Definition 9 A generating function of a sequence (an)n∈N is the formal expression∑
n≥0 anz

n.

Let
∑

n≥0 anz
n and

∑
n≥0 bnz

n be two generating functions. Then, their sum is
∑

n≥0(an+bn)zn,
and (for c ∈ R) c

∑
n≥0 anz

n is
∑

n≥0(can)zn. The product of
∑

n≥0 anz
n and

∑
n≥0 bnz

n is
given by the so-called convolution of the the sequences (an)n∈N and (bn)n∈N:(∑

n≥0

anz
n

)(∑
n≥0

bnz
n

)
=
∑
n≥0

(
n∑
k=0

akbn−k

)
zn

Obviously,
∑

n≥0 anz
n = 0 is the additive identity and

∑
n≥0 anz

n = 1 is the multiplicative
identity. The (multiplicative) inverse of a generating function

∑
n≥0 anz

n is a generating

function
∑

n≥0 bnz
n such that

(∑
n≥0 anz

n
) (∑

n≥0 bnz
n
)

= 1.

Proposition 32
∑

n≥0 anz
n has an inverse if and only if a0 6= 0.

Proof: “⇒”: Obvious, because if
∑

n≥0 bnz
n is an inverse of

∑
n≥0 anz

n, then b0 = 1
a0

.

“⇐”: Assume that a0 6= 0. By setting b0 = 1
a0

and bn = − 1
a0

∑n
k=1 akbn−k for n ∈ N \
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{0} we get that
∑n

k=0 akbn−k = 1 if n = 0 and
∑n

k=0 akbn−k = 0 if n ∈ N \ {0}. Thus(∑
n≥0 anz

n
) (∑

n≥0 bnz
n
)

= 1. 2

When considering generating function, we do not care of the radius of the ball where the power
sum converges. However, in all our applications, the generating functions

∑
n≥0 anz

n have the
property, that there is a constant M > 0 such that |an| ≤Mn, so at least for values z ∈ C with
z < 1

M
, the series will converge. We always assume that z is small enough such that the series

converges.

Examples: The following ways to compute generating functions are simply a consequence of
the standard formula for the geometric sum:

•
∑
n≥0

zn = 1
1−z .

•
∑
n≥0

anzn = 1
1−az for a constant a 6= 0.

•
∑
n≥0

z2n = 1
1−z2 .

The binomial theorem implies:

•
∑
n≥0

(
m
n

)
zn = (1 + z)m.

By computing products of generating functions, we can get more closed formulas for generating
functions. For example:

1

(1− z)2
=

(∑
n≥0

zn

)(∑
n≥0

zn

)
=
∑
n≥0

(n+ 1)zn =
∑
n≥1

nzn−1.

This leads to: ∑
n≥0

nzn =
z

(1− z)2

and ∑
n≥0

(n+ 1)cnzn =
1

(1− cz)2
.

More generally, we get:(
1

1− z

)m
=

(∑
n≥0

zn

)m

=
∑
n≥0

(
m+ n− 1

n

)
zn

because
(
m+n−1

n

)
is the number of ways to choose n non-distinguishable objects from m

distinguishable bins.
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3.3 Using Generating Functions to Solve Recursions

As an example, we consider the Fibonacci numbers (Fn)n∈N which can be defined recursively
by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 (for n ∈ N \ {0, 1}). We will show how such a
homogeneous linear recursion can be solved (where “homogeneous” means that Fn is just a
weighted sum of the previous numbers of the sequence without any additive term).

There are five steps to solve such a recursion:

1. State the generating function F (z) =
∑

n≥0 Fnz
n and write it function using the recursion:

F (z) = F0 + F1z +
∑
n≥2

Fnz
n = z +

∑
n≥0

Fn+2z
n+2 = z +

∑
n≥0

(Fn+1 + Fn)zn+2

2. Replace all infinite sums on the right-hand side by F (z):

F (z) = z +
∑
n≥0

Fn+1z
n+2 +

∑
n≥0

Fnz
n+2 = z + z

∑
n≥0

Fn+1z
n+1 + z2

∑
n≥0

Fnz
n

= z + z
∑
n≥1

Fnz
n + z2F (z) = z + z(F (z)− F0z

0) + z2F (z)

= z + zF (z) + z2F (z).

3. Solve the equation for F (z):

F (z) =
z

1− z − z2
.

4. Write the right-hand side as a formal power series.
The approach is the partial fraction decomposition. We search for numbers A,B,α,
and β such that

z

1− z − z2
=

A

1− αz
+

B

1− βz
We can find a solution of this equation by computing a solution of the following system
of equations:

(i) (1− αz)(1− βz) = 1− z − z2

(ii) A(1− βz) +B(1− αz) = z

By equating the coefficients (i) leads to α+ β = 1 and α · β = −1. By combining these

equations we get α2 − α − 1 = 0, so α ∈ {1
2

+
√

5
2
, 1

2
−
√

5
2
}. We can choose α = 1

2
+
√

5
2

which implies β = 1
2
−
√

5
2

.

Equation (ii) gives A = −B and −A
(

1
2
−
√

5
2

)
− B

(
1
2

+
√

5
2

)
= 1. Therefore, we get

A = 1√
5

and B = − 1√
5
.
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Since these numbers A,B,α, and β solve the equations (i) and (ii), we get (by applying
the formula for the geometric sum):

F (z) =

1√
5

1−
(

1+
√

5
2

)
z

+
− 1√

5

1−
(

1−
√

5
2

)
z

=
∑
n≥0

1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
zn.

5. Now, we get the sequence by comparing the coefficients:

Fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.

Remark: The number Φ = 1+
√

5
2
≈ 1.618 is called golden ratio.

General approach for solving linear recursions: Consider a (homogeneous) linear recur-
sion of length k:

an = c1an−1 + · · ·+ ckan−k (n ≥ k)

ai = bi (i ∈ {0, . . . , k − 1})

1./2. Generating function is A(z) =
∑

n≥0 anz
n. Application of the recursion:

A(z) =
k−1∑
n=0

bnz
n +

∑
n≥k

(c1an−1 + · · ·+ ckan−k)z
n

=
k−1∑
n=0

bnz
n + c1z

(
A(z)−

k−2∑
i=0

aiz
i

)

+c2z
2

(
A(z)−

k−3∑
i=0

aiz
i

)
+ · · ·+ ck−1z

k−1(A(z)− a0) + ckz
kA(z)

3. Solve the equation for A(z):

A(z) =
d0 + d1z + . . . dk−1z

k−1

1− c1z − c2z2 − . . . ckzk
for appropriate d0, . . . , dk−1

4. Partial fraction decomposition:

A(z) =
r∑
i=1

gi(z)

(1− αiz)mi

where gi(z) is a polynomial of degree at most mi − 1 (i = 1, . . . , r).
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5. Computation of the coefficients. Let gi(z) =
∑mi−1

j=0 gijz
j (i = 1, . . . , r). Then:

A(z) =
r∑
i=1

mi−1∑
j=0

gij
∑
n≥0

(
n+mi − 1

n

)
αni z

n+j.

Computing the partial fraction decomposition boils down to computing zeros of a polynomial.
Let p(z) = 1 + e1z + e2z

2 + · · · + ekz
k be a polynomial with coefficient 1 of z0. pR(z) =

zk + e1z
k−1 + e2z

k−2 + · · · + ekz
0 is called the reflected polynomial of p. This implies

p(z) = zkpR(1
z
). Let α1, . . . , αk be the (complex) zeros of pR, so

pR(z) = (z − α1) · · · · · (z − αk)

Thus

p(z) = zk
(

1

z
− α1

)
· · · · ·

(
1

z
− αk

)
= (1− α1z) · · · · · (1− αkz)

Therefore, the zeros of the reflected polynomial gives us the denominators of the partial fraction
decomposition.

The numerators can be computed by comparing coefficients of the polynomials. This leads to
an equation system with k variables and k equations.

Simultaneous Recursions
We can also use generating functions to solve simultaneous recursions of two sequences
(an)n∈N and (bn)n∈N where an may depend on b1, . . . , bn−1 and bn on a1, . . . , an−1. We consider
an example that is motivated by the following question: What is the digit immediately to the
right of the decimal point in the decimal representation of (

√
2 +
√

3)1980?

The approach to solve this problem is to consider more generally the numbers (
√

2 +
√

3)2n for
n ∈ N. For small value of n, we get the following numbers:

(
√

2 +
√

3)0 = 1

(
√

2 +
√

3)2 = 5 + 2
√

6

(
√

2 +
√

3)4 = (5 + 2
√

6)2 = 49 + 20
√

6

Claim: There are sequences (an)n∈N and (bn)n∈N with an, bn ∈ N for n ∈ N such that
(
√

2 +
√

3)2n = an + bn
√

6.

Proof of the Claim: Apply induction: The case n = 0 is trivial (set a0 = 1 and b0 = 0). For
n ∈ N \ {0}, we get:

(
√

2 +
√

3)2n = (
√

2 +
√

3)2n−2(
√

2 +
√

3)2

= (an−1 + bn−1

√
6)(5 + 2

√
6)2

= (5an−1 + 12bn−1) + (2an−1 + 5bn−1)
√

6
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This proves the claim.

The proof also yields recursion formulas for an and bn for n ≥ 1:

an = 5an−1 + 12bn−1

bn = 2an−1 + 5bn−1

Moreover, we have a0 = 1 and b0 = 0

We can solve this recursion by using the generating function A(z) =
∑

n≥0 anz
n and B(z) =∑

n≥0 bnz
n. This gives us

A(z) = a0z
0 +

∑
n≥1

anz
n = a0 +

∑
n≥1

(5an−1 + 12bn−1)zn = 1 + 5zA(z) + 12zB(z)

and
B(z) = b0z

0 +
∑
n≥1

bnz
n =

∑
n≥1

(2an−1 + 5bn−1)zn = 2zA(z) + 5zB(z).

The latter equation implies B(z) = 2zA(z)
1−5z

, and together with the previous equation, we get

A(z) = 5zA(z) + 12zA(z)
1−5z

, so

A(z) =
1− 5z

1− 10z + z2

We use the equation

1− 10z + z2 =
(

1− (5 + 2
√

6)z
)(

1− (5− 2
√

6)z
)

to get a partial fraction decomposition

A(z) =
1− 5z

1− 10z + z2
=

1
2

1− (5 + 2
√

6)z
+

1
2

1− (5− 2
√

6)z
.

Thus

an =
1

2

((
5 + 2

√
6
)n

+
(

5− 2
√

6
)n)

. (3)

Now, we can use this result to answer the initialquestion.

We have (5 + 2
√

6)n = (
√

2 +
√

3)2n = an + bn
√

6. Therefore, (3) implies:

an =
1

2

(
an + bn

√
6 +

(
5− 2

√
6
)n)

,

which leads to
an = bn

√
6 +

(
5− 2

√
6
)n
.

Since an is integral, this yields {bn
√

6}+ {(5− 2
√

6)n} = 1 (where {x} := x− bxc for x ∈ R).
However, 5 − 2

√
6 < 0.11, so for n = 990, the first digits after the decimal point in the

decimal representation of
(
5− 2

√
6
)n

are 0. Therefore, the first digits after the decimal point

in the decimal representation of b990

√
6 must be 9. Since a990 ∈ N, the same is true for

(
√

2 +
√

3)1980 = a990 + b990

√
6, so the answer is “9”.
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3.4 Exponential Generating Functions

Definition 10 For a sequence (an)n∈N we call Â(z) =
∑

n≥0
an
n!
zn the exponential

generating function of (an)n∈N.

Thus the exponential generating function of (an)n∈N is simply the generating function of (an
n!

)n∈N,
so we can make use of all results for the generating functions. In particular, for the product of
the exponential generating functions Â(z) =

∑
n≥0

an
n!
zn and B̂(z) =

∑
n≥0

bn
n!
zn we get

the exponential generating function Ĉ(z) =
∑

n≥0
cn
n!
zn of the sequence (cn)n∈N with

cn
n!

=
n∑
k=0

ak
k!

bn−k
(n− k)!

because ( cn
n!

)n∈N must be the convolution of (an
n!

)n∈N and ( bn
n!

)n∈N.

Therefore, Ĉ(z) = Â(z)B̂(z) holds if and only if for all n ∈ N:

cn =
n∑
k=0

(
n

k

)
akbn−k. (4)

This equivalence is called binomial convolution.

Examples:

• By writing the Taylor series for the exponential function we get eaz =
∑

n≥0
an

n!
zn.

Moreover, eaz · ebz = e(a+b)z. Hence, by using (4) and comparing the coefficients of zn in
eaz · ebz and e(a+b)z we get again the binomial theorem:

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k.

• We have (1 + z)a =
∑

n≥0

(
a
n

)
zn =

∑
n≥0

an

n!
zn, so (1 + z)a is the exponential generating

function of (an)n∈N. Since we have (1 + z)a(1 + z)b = (1 + z)a+b, we get by (4) and
equating the coefficients

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k

By dividing this equation by n! we get the Vandermonde identity:(
a+ b

n

)
=

n∑
k=0

(
a

k

)(
b

n− k

)
.
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• For the derangement numbers Dn, we have already proved the formula n! =
∑n

k=0

(
n
k

)
Dk.

This means that (n!)n∈N is the convolution of (Dn)n∈N and the sequence 1, 1, 1, . . . whose
exponential generating function is

∑
n≥0

1
n!
zn = ez. Thus, with D̂(z) =

∑
n≥0

Dn

n!
zn the

function D̂(z) · ez is the exponential generating function of (n!)n∈N, so

D̂(z) · ez =
n!

n!
zn =

∑
n≥0

zn =
1

1− z
.

This implies

D̂(z) =
e−z

1− z
. (5)

We can consider e−z =
∑

n≥0
1
n!

(−1)nzn and 1
1−z =

∑
n≥0 z

n as (standard) generating
functions. By comparing coefficients in (5), this gives us once again the equation

Dn

n!
=

n∑
k=0

1

k!
(−1)k.

II Graphs

4 Planar Graphs

For the lectures about planarity of graphs we refer to Chapter 2.5 of the textbook by Korte
and Vygen [2018].

5 Colourings of Graphs

In this section, all graphs will be simple (and as usual undirected).

5.1 Vertex-Colourings

Definition 11 For a graph G, a vertex-colouring of G is a mapping c : V (G)→ N\{0}
such that c(v) 6= c(w) for every {v, w} ∈ E(G). A vertex-colouring c is called k-vertex-
colouring if c(v) ≤ k for all v ∈ V (G). If there is a k-vertex-colouring of G, then
we call G k-(vertex-)colourable. If c is a k-vertex-colouring of G, then the sets
{v ∈ V (G) | c(v) = i} are called colour classes of c (i = 1, . . . , k). The chromatic
number χ(G) of G is the smallest number k such that G is k-colourable. If k = χ(G),
the graph G is called k-chromatic.
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Remark: For a graph G let α(G) be the size of a largest stable set in G and ω(G) the size of
a largest clique in G.

• In a vertex-colouring, all colour classes are stable sets and χ(G) is the smallest number of
stable sets into which V (G) can be partitioned. Since each of the colour classes has at
most α(G) elements, we get a lower bound of

χ(G) ≥ |V (G)|
α(G)

.

• Since all vertices in a clique must get different colours in a vertex colouring, we get the
following bound

χ(G) ≥ ω(G).

Notation: For a Graph G let ∆(G) := max{|δG(v)| | v ∈ V (G)} be its maximum degree.

Proposition 33 For every graph G, we have:

χ(G) ≤ ∆(G) + 1.

Proof: The following greedy-algorithm computes a colouring with ∆(G) + 1 colour: Traverse
the vertices of G in an arbitrary ordering and colour each vertex v with the first colour that
has not yet been used at a neighbour of v. 2

Of course, the proof of the previous proposition yields an algorithm to compute a vertex-colouring
with ∆(G) + 1 colours. However the chromatic number of a graph can be much smaller than
∆(G), see for example the graph K1,n−1 where χ(K1,n−1) = 2 but ∆(K1,n−1) = n− 1.

Examples for graphs G with χ(G) = ∆(G) + 1 are complete graphs and odd cycles. For all
other connected graphs we get a better bound on χ(G):

Theorem 34 (Brooks’ Theorem, Brooks [1941]) Let G be a connected graph that is neither
a complete graph nor a cycle of odd length. Then:

χ(G) ≤ ∆(G).

Proof: Assume that the statement is false. Let G be a smallest (with respect to the number
of vertices) counterexample, so in particular G is connect but neither a complete graph nor a
cyle of odd length, and we have χ(G) = ∆(G) + 1. This implies ∆(G) > 2 because G cannot
be a cycle of even length or a path (in that case, we would have χ(G) = ∆(G) = 2).

Choose a vertex v with |δG(v)| = ∆(G). Since G is not a complete graph, there must be two
neighbours u and w of v that are not connected by an edge in G. We distinguish two cases:
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Case 1: G[V (G) \ {u,w}] is not connected.
Let A1 be a connected component of G[V (G) \ {u,w}]. Set V1 := V (A1) ∪ {u,w} and V2 :=
V (G) \ V (A1).
Then χ(G[Vi]) ≤ ∆(G) because G[Vi] is not complete (there is no edge between u and w) and
∆(G) ≥ 3 (i ∈ {1, 2}). If both for G[V1] and G[V2] there a vertex-colouring with ∆(G) colours
such that u and w get different colours then we can choose these two colourings in such a way
that u gets in both of them colour 1 and w gets in both of them colour 2. This way, we receive
a vertex-colouring of G with ∆(G) colours. Thus, we can assume that there is a j ∈ {1, 2} such
that every ∆(G)-vertex-colouring of G[Vj] colours u and w with the same colour. Then both u
and w have degree at least ∆(G)− 1 in G[Vj]. Hence in G[V3−j] they have degree at most 1.
Thus, as ∆(G) ≥ 3, also G[V3−j] has a vertex-colouring with ∆(G) colours where u and v get
the same colour. Therefore G is ∆(G)-colourable.

Case 2: G[V (G) \ {u,w}] is connected.
Then G[V (G) \ {u,w}] contains a spanning tree T . Colour u and w with colour 1. Afterwards
perform (n− 3)-times the followings steps:

(1) Choose a leaf x of T with v 6= x.

(2) Colour x with the smallest colour not used at the neighbours of x in G.

(3) Remove x from T .

After these steps all vertices except v have been coloured. For this colouring we need at most
∆(G) colours since by the choice of x step (1) the vertex x always has an un-coloured neighbour
(namly its neighbour in T ). Thus, when x is coloured at most ∆(G)− 1 of its neighbours have
already been coloured.

Finally, we have to assign a colour to v. All of its ∆(G) neighbours have already been coloured
but at least two of them (u and w) got the same colour, so also for v we can choose one of the
colours in {1, . . . ,∆(G)}. 2

Theorem 35 For every planar graph G, we have χ(G) ≤ 5.

Proof: We apply induction in n = |V (G)|. For n ≤ 5, the statement is trivial, so assume
n > 5. Since G is planar, it has at most 3n− 6 edges. Therefore, the must be a node v0 ∈ V (G)
of degree at most 5 (otherwise, we had 2|E(G)| =

∑
v∈V (G) |δG(v)| ≥ 6n). By induction

hypothesis, there must be a 5-vertex-colouring c of G− v0. Let v1, . . . , vk be the neighbours of
v0 (so in particular k ≤ 5). If less than 5 colours are used by c for the neighbours of v0, we
can simply colour v0 with an unused colour out of {1, . . . , 5}. Thus, assume that all colours
{1, . . . , 5} occur in the neighbours of v0. This implies k = 5. As G is planar, there must be two
non-adjacent neighbours vi and vj of v0 (otherwise the nodes {v1, . . . , v5} would be a 5-clique).
The graph G− v0 stays planar if we add an edge e between vi and vj (as there is a path via v0

between vi and vj in G). And (G− v0)/e is also planar, so by induction hypothesis, it has a
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5-colouring. This corresponds to a 5-colouring of G− v0 in which vi and vj get the same colour.
But then, again, at least one colour in {1, . . . , 5} is left for v0. 2

Remark: By the famous Four Colour Theorem, even for colour suffice to colour planar
graphs, so χ(G) ≤ 4 for any planar graph G. The first proof of this theorem was given in
1977 by Appel and Haken (Appel and Haken [1977a], Appel and Haken [1977b]). The proof
is quite involved and cannot be shown here. The proof is based on the analysis of so-called
configurations. A configuration is a connected subgraph of a graph G where we are given in
addition degrees of the vertices of the subgraph in G. A set M of configurations is called
unavoidable if every planar graph contains a configuration in M . We know for example that
the set M∗ consisting of 6 copies of K1, where we set the degree of the vertex in the i-th copy
to i (i = 0, . . . , 5), is unavoidable because every planar graph has a vertex of degree at most 5.

A configuration is called reducible if no smallest counter example to the Four Colour Theorem
contains it. For example the configuration which consists of the graph K1 where we demand a
vertex degree of 3 is obviously reducible. Now the goal is to find an unavoidable set of reducible
configurations. For the Five Colour Theorem the elements of M∗ are reducible. For the Four
Colour Theorem, Appel and Haken could find an unavoidable set of reducible configurations
that consists of 1936 elements To check this set of configurations they had to use a computer.
Later on, they could reduce the number of configurations to 1476. A somewhat shorter proof
that nedded only 633 configuration (but nevertheless needed the help of a computer) was given
by Robertson et al. [1997]. The ideas of the proof of the Four Colour Theorem are summarized
by Woodall und Wilson [1978] (see also Bollobás [1979]).

Proposition 36 Let G be a graph with m edges. Then

χ(G) ≤ 1

2
+

√
2m+

1

4
.

Proof: In a colouring with χ(G) colours there must be an edge between each pair of colour
classes (otherwise we could use the same colour for both classes). Thus m ≥

(
χ(G)

2

)
=

1
2
χ(G)(χ(G)− 1), which is equivalent to the inequality of the proposition. 2

Definition 12 The complement Ḡ of a graph G is the graph that is defined by the
vertex set V (Ḡ) := V (G) and the edge set E(Ḡ) :=

(
V (Ḡ)

2

)
\ E(G).
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Proposition 37 (Nordhaus and Gaddum [1956]) For every graph G with |V (G)| = n we
have:

(a) 2
√
n ≤ χ(G) + χ(Ḡ) ≤ n+ 1,

(b) n ≤ χ(G)χ(Ḡ) ≤
(
n+1

2

)2
.

Proof: (i) Let c : V (G)→ {1, . . . , χ(G)} be a vertex-colouring of G with χ(G) colours. Let
ni be the number of vertices of G coloured with i (i = 1, . . . , χ(G)). Then, maxi∈{1,...,χ(G)} ni ≥
n/χ(G). Since all vertices of a colour class of c have to have different colours in a vertex-colouring
of Ḡ, we get χ(Ḡ) ≥ maxi∈{1,...,χ(G)} ni. This implies χ(Ḡ) ≥ n/χ(G) and thus χ(G)χ(Ḡ) ≥ n.

(ii) The inequality (χ(G)− χ(Ḡ))2 ≥ 0 implies (χ(G) + χ(Ḡ))2 ≥ 4χ(G)χ(Ḡ), and hence we

get χ(G) + χ(Ḡ) ≥ 2(χ(G)χ(Ḡ))
1
2

(i)

≥ 2
√
n.

(iii) We show χ(G) + χ(Ḡ) ≤ n+ 1 by induction in n = |V (G)|.
For n = 1, the statement is trivial.
Let n > 0 and v ∈ V (G). By induction hypothesis we have χ(G− v) +χ(Ḡ− v) ≤ n. Moreover

χ(G) ≤ χ(G− v) + 1

and
χ(Ḡ) ≤ χ(Ḡ− v) + 1.

If at least of one of the last two inequalities is a strict inequality, then the statement follows
directly. Hence assume that χ(G) = χ(G − v) + 1 and χ(Ḡ) = χ(Ḡ − v) + 1. This gives
|δG(v)| ≥ χ(G− v) and |δḠ(v)|(= n− 1− |δG(v)|) ≥ χ(Ḡ− v). Since |δG(v)|+ |δḠ(v)| = n− 1,
we get χ(G− v) + χ(Ḡ− v) ≤ n− 1 and finally χ(G) + χ(Ḡ) ≤ n+ 1.

(iv) The inequality χ(G)χ(Ḡ) ≤
(
n+1

2

)2
follows form the inequality shown in step (iii) and the

inequality (χ(G) + χ(Ḡ))2 ≥ 4χ(G)χ(Ḡ). 2

Proposition 38 For every k ∈ N\{0} there is a graph Gk with χ(Gk) = k and ω(Gk) ≤ 2.

Proof: The graphs Gk can be built recursively. For k = 1, this is trivial.

Hence, let k > 1. We assume that the graphs G1, . . . , Gk−1 have already been built. Gk

contains a copy of each of the graphs G1, . . . , Gk−1 as a subgraph. In addition Gk contains
a vertex set Ak consisting of |V (G1)| · |V (G2)| · · · · · |V (Gk−1)| vertices. Choose a bijection
τk : Ak → {(v1, . . . , vk−1) | v1 ∈ V (G1), . . . , vk−1 ∈ V (Gk−1)}. Then Gk contains (apart from
the edges in the subgraphs G1, . . . , Gk−1) for each vertex v ∈ Ak an edge from v to the elements
of the (k − 1)-tupel τk(v). By construction, the graph Gk does not contain any cycles of length
three (provided that the graphs G1, . . . , Gk−1 do not contain any 3-cycle).

Under the assumption that each Gi with i ∈ {1, . . . , k − 1} can be coloured with i colours, the
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graph Gk can be coloured with k-colours: for the colouring of all subgraphs G1, . . . , Gk−1 we
need in total k− 1 colours and the vertices in Ak (which is a stable set) can get the same colour.

On the other hand, Gk is not (k − 1)-colourable if none of the Gi (i = 1, . . . , k − 1) is (i− 1)-
colourable. To prove this, assume that there was a k− 1-colouring of Gk. Then choose a vertex
v1 in G1 with colour c1. There must be a vertex v2 in G2 with colour c2 6= c1 because G2 cannot
be coloured with just one colour. Since G3 is not 2-colourable there must be a vertex v3 ind
G3 with colour c3 6∈ {c1, c2}. We can continue this and get for each i ∈ {1, . . . , k − 1} a vertex
vi in Gi whose colour ci is not contained in {c1, . . . , ci−1}. But there is a vertex v ∈ Ak with
τk(v) = (v1, . . . , vk−1). Thus, v is in Gk connected by an edge to all vertices in {v1, . . . , vk−1},
so it cannot be coloured with any colour from c1, . . . , ck−1. Therefore, we need k colours for a
vertex-colouring of Gk. 2

Remark: For any k ∈ N there are graphs G with χ(G) ≥ k that do not contain any cycle of
length less than k (see Diestel [2005] for proof of this statement).

Definition 13 An undirected graph G is called perfect if χ(H) = ω(H) holds for every
induced subgraph H of G.

There are several NP-hard problems that can be solved in polynomial-time if we restrict the
instances to perfect graphs. For exampe, one can compute maximum stable sets, maximum
cliques and optimum vertex-coloring in perfect graphs in polynomial time (see Grötschel, Lovász
und Schrijver [1984]).

Proposition 39 A graph is perfect if and only if α(H)ω(H) ≥ |V (H)| holds for every
induced subgraph H.

Proof: The proof is taken from Schrijver [2003].

”‘⇒”’ Let G be perfect and H an induced subgraph of G. Then χ(H) = ω(H), and since
α(H)χ(H) ≥ |V (H)|, this implies α(H)ω(H) ≥ |V (H)|.

”‘⇐”’ Assume that there is a non-perfect graph G such that α(H)ω(H) ≥ |V (H)| for each
induced subgraph H of G. We can assume that G is a smallest graph with this property, so in
particular any induced subgraph of G is perfect.

Let V (G) = {1, . . . , n}, α = α(G) and ω = ω(G).

We first show that there are stable sets S0, S1, . . . , Sαω in G such that every vertex is contained
in exactlyα of these sets.

Let S0 be a stable set of size α. For every v ∈ S0 the graph G− v is perfect, so χ(G− v) =
ω(G − v) ≤ ω(G). Thus V (G) \ {v} can be decomposed in ω stable sets. By doing this for
every v ∈ S0, we get the sets S0, S1, . . . , Sαω.
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For each set Si (i = 0, . . . , αω) there is a clique Ci of size ω with Ci ∩Si = ∅, because otherwise
we had ω(G) ≥ ω(G− Si) + 1 = χ(G− Si) + 1 ≥ χ(G), which means that G is perfect.

Every clique Ci and every stable set Sj have at most one vertex in common, but in total every
Ci intersects αω of the sets Sj, because each of the ω elements of Ci is contained in α of the
stable sets. Therefore, |Ci ∩ Sj| = 1 for i 6= j.

Consider two (αω + 1) × n-inzidence matrices M and N with entries 0 and 1. Let M =
(Mij)(i,j)∈{0,...,αω}×{1,...,n} with Mij = 1 ⇔ j ∈ Si and N = (Nij)(i,j)∈{0,...,αω}×{1,...,n} with Nij =
1⇔ j ∈ Ci.

Then, MN t = J − I where J is an (αω + 1)× (αω + 1)-matrix consisting of ones only, and I is
the (αω + 1) × (αω + 1)-identity matrix. The matrix J − I has rank αω + 1, which implies
n ≥ αω + 1. This is a contradiction to our assumption that α(H)ω(H) ≥ |V (H)| for each
induced subgraph H of G. 2

Corollary 40 (Weak perfect graph theorem)( Lovász [1972a], Lovász [1972b]) A graph
G is perfect if and only if Ḡ is perfect.

Proof: Follows directly from the previous theorem. 2

Theorem 41 (Strong perfect graph theorem) (Chudnovsky et al. [2006]) A graph G
is perfect if and only if it does not contain an odd cycle with length at least 5 nor the
complement of an odd cycle with length at least 5 as an induced subgraph.

For a proof we refer to Chudnovsky et al. [2006].

Theorem 42 It can be checked in time O(|V (G)|9) if a given graph G is perfect.

For a proof see Chudnovsky et al. [2005].
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5.2 List-Colourings

Definition 14 Let G be a graph. Assume that for every vertex v ∈ V (G) we are
given a set Cv (the colour-list of v). A (feasible) vertex-list-colouring is a mapping
c : V (G) → ∪v∈V (G)Cv such that c(v) ∈ Cv for every vertex v ∈ V (G) and c(v) 6= c(w)
for every edge {v, w} ∈ E(G). The list-chromatic number χl(G) of G is the
smallest number such that for any choice of colour-lists of length at least χl(G) a
vertex-list-colouring exists.

Observation: For every graph G we have χ(G) ≤ χl(G).

Proposition 43 For k ∈ N we have χl(Kk,kk) > k.

Proof: Let V (Kk,kk) = Ak∪̇Bk with |Ak| = k, |Bk| = kk and E(Kk,kk) = {{a, b} | a ∈
Ak, b ∈ Bk}. We choose all colours for the lists Cv (f”ur v ∈ V (G)) from a set {1, . . . , k2}. Let
Ak = {a1, . . . , ak}. Set Cai = {(i− 1)k + 1, (i− 1)k + 2, . . . , (i− 1)k + k} (for i ∈ {1, . . . , k}).
Thus, the sets Cai are pairwise disjoint. Chose a bijection

φ : {1, . . . , kk} →
{
X ⊆ {1, . . . , k2} | |X| = k, |X ∩ C(ai)| = 1 for all i ∈ {1, . . . , k}

}
.

With Bk = {b1, . . . , bkk} we set Cbj = φ(j) (j ∈ {1, . . . , kk}). If we colour each element ai ∈ Ak
with a colour ci ∈ Cai (i ∈ {1, . . . , k}), then for bj with φ(j) = {c1, . . . , ck} there is no colour
left. Hence there is no vertex-list-colouring of Kk,kk for these lists and therefore χl(Kk,kk) > k.
2

Theorem 44 For every planar graph G we have χl(G) ≤ 5.

Proof: We can assume that G is connected and that there is a planar embedding of G such
that all boundaries of regions are cycles and that for all region with the possible exception of
the unbounded region these cycles have length 3. (we call such graphs nearly triangulated). If
these conditions aren’t met we can add edges until they are met (and adding edges can only
increase the list chromatic number).

We show the theorem by proving the following statement by induction in the number of vertices:

Let G be a nearly triangulated planar graph with fixed planar embedding. Let B be the cycle
on the boundary of the unbounded region. We are given colour lists Cv (v ∈ V (G)) with the
following properties:

• There are two vertices x and y that are neighbours on B and two different colours α and
β such that Cx = {α} and Cy = {β}.
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• For all other vertices v on B we have |Cv| ≥ 3.

• For the vertices v not contained in B we have |Cv| ≥ 5.

Then, there is a list colouring of G for these colour lists.

We apply induction in the number of vertices. First assume |V (G)| = 3. Then the statement is
valid because apart from x and y there is only one vertex v in G, and for this vertex we have
|Cv| ≥ 3, so the colour list Cv of V contains a colour that is different from α and β.

Fof |V (G)| > 3 we distinguish two cases:

Case 1: G contains an edge that is a chord of B, i.e. an edge connecting two vertices u and v
on B such that u are v are not neighboured on B.

Then, B contains two different u-v-paths B1 und B2. For i ∈ {1, 2} let Gi be the subgraph G
that is bounded by the embedding of Bi and {u, v}. Thus, G1 and G2 have exactly u und v as
common vertices. W.l.o.g. we can assume that B1 contains the vertices x and y. Now we apply
the induction hypothesis to G1 and get a listen colouring of G1. Then, in particular u and v
have been coloured. G2 (with the colour list of u and v reduced to one element each) fulfills
all conditions of the statement and we have |V (G2)| ≤ |V (G)|. Hence we can also apply the
imduction hypothesis to G2 and extend the list colouring of G1 to a list colouring of G.

Case 2: G does not contain a chord of B.

Let v be the neighbour of x on B that is different from y. Let w be the neighbour of v on B that
is different from x. Thus B contains the edges {w, v}, {v, x}, and {x, y} (w = y is possible).
Let X be the set of neighbours of v. Since G is nearly triangulated, the graph G′ := G − v
is nearly triangulated, too. As |Cv| ≥ 3, the set Cv contains at least colours γ and δ that are
different from α. Now remove for each vertex z ∈ X \ {w, x} the colours γ and δ from the
colour list Cz. Since all elements of X \ {w, x} are on the outer boundary of G′ but not on the
outer boundary of G (otherwise G would contain a chord of B), G′ meets all conditions of the
statement that we want to prove. We can apply the induction hypothesis to G′ an get a list
colouring of G′ where of all vertices in X at most w is coloured with one of the colours γ or δ.
Thus we can extend this solouring to a list colouring of G by assigning to v one of the colours
γ and δ that has not been used for w. 2

Remark: This bound on the list chromatic number of G is best possible since there are planar
graphs G with χl(G) = 5 (see the exercises).
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5.3 Edge-Colourings

Definition 15 Let G be an graph. A (feasible) k-edge-colouring of G is a mapping
c : E(G) → {1, . . . , k} such that c(e1) 6= c(e2) for every two edges e1, e2 ∈ E(G) with
|e1∩ e2| = 1. If there is a feasible k-edge-colouring then G is called k-edge-colourable. The
sets {e ∈ E(G) | c(e) = i} are called colour classes of the edge-colouring c (i = 1, . . . , k).
The chromatic index (also called edge-chromatic number) χ′(G) of G is the smallest
number k such that G is k-edge-colourable.

An edge-colouring of a graph G can be seen as a vertex-colouring of the line graph LG of G with
V (LG) = E(G) and E(LG) = {{e, e′} ⊂ E(G) | |e ∩ e′| = 1}. This way, all results concerning
vertex-colourings can be translated to edge-colourings. However, for the chromatic index, very
good upper and lower bounds are known, which are shown in the next theorem.

Theorem 45 (Vizing’s Theorem)(Vizing [1964]) For every graph G we have
∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Proof: The inequality ∆(G) ≤ χ′(G) is trivial.

We prove χ′(G) ≤ ∆(G) + 1 by induction in the number of edges. The statement is trivial if
E(G) = ∅. So let E(G) 6= ∅, and let e = {x, y} be an edge of G. By induction assumption, there
is an edge colouring c of G− e with ∆(G) + 1 colours. Now choose for each vertex v ∈ V (G)
a colour n(v) ∈ {1, . . . ,∆(G) + 1} that is missing at v, i.e. a colour with n(v) 6∈ {c(e′) | e′ ∈
δG−e(v)}.

Determine a sequence y0, . . . , yt of different neighbouring nodes of x with the following properties:

• y0 = y.

• n(yi−1) = c({x, yi}) (i = 1, . . . , t).

• If there is a neighbours z of x with n(yt) = c({x, z}) then z ∈ {y0, . . . , yt}.

Case 1: There is no neighbour z of x with n(yt) = c({x, z}). The edge colouring c′ arises from
c as follows: Set c′({x, yi−1}) := c({x, yi}) (i = 1, . . . , t) and c′({x, yt}) = n(yt).

Case 2: There is an s ∈ {1, . . . , t− 1} with n(yt) = c({x, ys}). Let H := (V (G), {e ∈ E(G) |
c(e) ∈ {n(x), n(yt)}}). Then we have ∆(H) ≤ 2, and yt has degree 1 at most in H. Consider
in H an inclusion-maximal path P that starts in yt.

We distinguish three subcases.

Subcase 2.1: P ends in ys−1. Then the last edge of P has the colour n(x), since the colour
n(yt) = c({x, ys}) = n(ys−1) at ys−1 is missing. c′ arises from c as follows: Swap n(x) and n(yt)
on P , and set c′({x, yi−1}) := c({x, yi}) (i = 1, . . . , s− 1) and c′({x, ys−1}) := n(x)
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Subcase 2.2: P ends in x. Then {ys, x} is the last edge in P , since n(x) is missing at x and
{ys, x} is the only edge incident to x with colour n(yt). c

′ arises from c by swapping n(yt) and
n(x) on P and c′({x, yi−1}) := c({x, yi}) (i = 1, . . . , s).

Subcase 2.3: P ends neither in x nor in ys−1. Then we get c′ from c as follows: Swap n(x)
and n(yt) to P , and set c′({x, yi−1}) := c({x, yi}) (i = 1, . . . , t) and c′({x, yt}) := n(x).

In all cases, it is easy to check that c′ is indeed an feasible edge colouring of G. 2

Graphs G with χ′(G) = ∆(G) are called graphs of class 1, and graphs G with χ′(G) = ∆(G)+1
are called graphs of class 2. In the following, we we determine the classes of some groups of
graphs.

Theorem 46 (Kőnig’s Theorem)(Kőnig [1916]) For every bipartite graph G we have
χ′(G) = ∆(G).

Proof: We prove the statement by induction in m = |E(G)|. For m = 0, the statement is
trivial.

Thus, let m > 0 and let e = {v, w} ∈ E(G) be an edge. By induction hypothesis, G− e has an
edge-colouring c : E(G) \ {e} → {1, . . . ,∆(G)}. In G − e the vertices v and w have at most
∆(G)− 1 neighbours, so there are numbers n(v), n(w) ∈ {1, . . . ,∆(G)} such that n(v) 6= c(e′)
for all edges e′ ∈ (δG(v) \ {e}) and n(w) 6= c(e′) for all edges e′ ∈ (δG(w) \ {e}). If n(v) = n(w),
we can colours {v, w} with the colour n(v) and are done. Hence assume n(v) 6= n(w). Consider
the subgraph H = (V (G), {e′ ∈ E(G) | c(e′) ∈ {n(v), n(w)}}). All vertices in H have degree at
most 2, and v has degree at most 1. Consider a longest path P in H starting in v. The edges
of the path are alternately coloured with n(w) and n(v). The path P cannot end in w, because
in that case its last edge was an n(v)-edge and P together with the edge {v, w} would be a
cycle of odd length (in contradiction to the assumption that G is bipartite). Hence, we can
swap the colours n(v) and n(w) on P and colour the edge {v, w} with the colour n(w). 2

Proposition 47 For n > 1 we have χ′(Kn) = 2bn+1
2
c − 1 =

{
n : n odd
n− 1 : n even

.

Proof: Let n > 1. We have ∆(Kn) = n− 1, so (by Theorem 45) χ′(Kn) ∈ {n− 1, n}.

Let n be odd. Every colour class of an edge-colouring of Kn can have at most n−1
2

elements.

Thus, χ(Kn) ≥
(
n
2

)
2

n−1
= n(n−1)

2
2

n−1
= n and hence χ′(Kn) = n.

In an edge-colouring c of Kn with n colours, every colour class must have exactly n−1
2

elements,
and for each node v ∈ V (Kn) there is a colour n(v) ∈ {1, . . . , n} with n(v) 6∈ {c(e) | e ∈ δKn(v)}.
And we have n(v) 6= n(w) for each two different nodes v and w.

Now let n be even. We have to show that there is an edge-colouring with n− 1 colours. Remove
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a node v from Kn. The resulting graph Kn−1 has an odd number of nodes, so it has an edge
colouring with n− 1 colours. Now colour for each w ∈ V (Kn−1) the edge {v, w} with the colour
n(w) missing at w. This give a colouring of Kn with n− 1 colours. 2

Korollar 48 Let G be a connected graph. If |V (G)| = 1 or G is a complete graph with
even number of nodes then χ(G) = χ′(G) + 1. In all other cases, we have χ(G) ≤ χ′(G).

Proof: The first part follows directly form the previous proposition. If G is a cycle of odd
length or a complete graph with odd number of nodes then χ(G) = ∆(G) + 1 = χ′(G). If G is
neither an odd cycle nor a complete graph then Brooks’s Theorem (Theorem 34) together with
Vizing’s Theorem (Theorem 45) imply χ(G) ≤ ∆(G) ≤ χ′(G). 2

Lemma 49 Let G be a graph with n nodes and m > ∆(G)bn
2
c edges. Then

χ′(G) = ∆(G) + 1.

Proof: Every colour class of an edge-colouring can have at most bn
2
c elements, so χ′(G) ≥

m
bn
2
c > ∆(G), and therefore χ′(G) = ∆(G) + 1. 2

Notation: Let G be a graph. For k ∈ N, we call G k-regular if all vertices in G are of degree
k.

Corollary 50 Let G be a regular graph with odd number of nodes. Then, we have:

(a) χ′(G) = ∆(G) + 1.

(b) If H arises from G by deleting at most ∆(G)
2
− 1 edges, we have χ′(H) = ∆(H) + 1.

Proof: We have |E(G)| ≥ |E(H)| ≥ ∆(G)
2
n− ∆(G)

2
+ 1 > ∆(G)n−1

2
= ∆(G)bn

2
c. Thus, G and

H satisfy the condition of Lemma 49. 2

Notation: For a graph G, we call an edge e ∈ E(G) a bridge if G−e contains more connected
components than G.

Theorem 51 Let G be a 3-regular planar graph without bridges. Then χ′(G) = 3.

Proof: Since χ′(G) ≥ 3 is trivial, we only have to show χ′(G) ≤ 3.

W.l.o.g. we can assume that G is connected (otherwise consider the connected components of
G).

Consider a fixed planar embedding of G. The Four Colour Theorem implies that we can colour
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the faces of the embedding with four colours such that neighbouring faces get different colours.
Since G does not contain a bridge, every edge is on the boundary of exactly two faces. For an
edge e let Ce be the set of the (two) colours of the faces that are bounded by e. Then we set

c(e) :=


1 : Ce = {1, 2} or Ce = {3, 4}
2 : Ce = {1, 3} or Ce = {2, 4}
3 : Ce = {1, 4} or Ce = {2, 3}

Every vertex touches exactly three faces, so by this assignment no two edges that are incident
to the same vertex can get the same colour. 2

We applied the Four Colour Theorem to proves the previous theorem. On the other hand, the
Four Colour Theorem can be proven easily by using the previous theorem. First of all, observe
the for proving the Four Colour Theorem it is sufficient to prove that for any planar embedding
of a planar graph G the faces of the embedding can be coloured with four colours such that
neighbouring faces get different colours. Moreover we can assume that G is connected, does
not contain any bridges and is 3-regular. By the previous theorem such a graph has a feasible
edge colouring c : E(G)→ {1, 2, 3}. In order to colour the faces of a planar embedding of G
with four colours, it is sufficient to assign to each face A of the embedding of G an ordered
pair (αA, βA) with αA, βA ∈ {1, 2} such that for each two neighbouring faces A and B we
have (αA, βA) 6= (αB, βB). The numbers αA and βA can be found in the following way. For
(i, j ∈ {1, 2, 3}, let Hi,j := (V (G), {e ∈ E(G) | c(e) ∈ {i, j}}). For every two colours i and j
from {1, 2, 3} the graph Hi,j is a 2-regular graph for which we are given a planar embedding by
the planar embedding of G. Obviously, there is a feasible colouring c̃i,j of the faces of the planar
embedding of Hi,j with two colours. Any face A of the embedding of G belongs to exactly one
face A1,2 of the embedding of H1,2 and to one face A1,3 of the embedding of H1,3 (see Fig. 1).
We set αA := c̃1,2(A1,2) and βA := c̃1,3(A1,3). It is easy to check that the pairs (αA, βA) have
the desired properties.

(a) (b) (c)

Figure 1: A 3-regular planar graph with a 3-edge-colouring (a). Pictures (b) and (c) show the
graphs H1,2 and H1,3 where colour red means “1”, colour green means “2” and colour blue
means “3”.

Remark: The equivalence of the Four Colour Theorem and Theorem 51 was known before the
For Colour Theorem has been proved.
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We can also define the list-chromatic index χ′l(G) of a graph G, which is is the list-chromatic
number of the line graph of G. Obviously, for any graph we have χ′(G) ≤ χ′l(G). It is an open
problem if there are graphs G with χ′(G) < χ′l(G). The list-chromatic conjecture says that
we have χ′(G) = χ′l(G) for all graphs, but so far it has been proved only for special classes of
graphs. For example, Galvin [1995] proved the list-chromatic conjecture for bipartite graphs-

III Matroids
For this part of the lecture, we refer to Chapter 13 of Korte and Vygen [2018].
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