Steiner Trees in Chip Design
Jens Vygen

Hangzhou, March 2009

Introduction

A digital chip contains millions of gates.
Each gate produces a signal (0 or 1) once every cycle.

The output signal of a gate is input to other gates.

vV v vy

For each gate we need a network that distributes the signal
from the root (output of this gate) to the given set of sinks.

>

» A set of pins that need to be connected is called a net.

In the simplest case the network is a Steiner tree.

Constraints and objectives

A feasible Steiner tree for a net (=set of pins)
» consists of horizontal and vertical wires on the wiring planes
» and vias connecting wires on different planes
» such that the network of wires, vias and pins is a tree,
>

each wire and via has at least a certain minimum width and
sufficient distance to blockages and other wires and vias,

» and obeys certain (local) ground rules (for manufacturing).
A Steiner tree is good if it

» consumes little area, avoids congested regions,

» has small electrical capacitance,

» allows for fast signal transmitting from the source to the
(critical) sinks,

» can be manufactured well (small yield loss).

Steiner trees at various design stages

v

Everywhere:

» shortest rectilinear Steiner trees
Placement:

» estimates (hypergraph models)

v

v

Timing optimization:
» RC-optimal trees
> buffered trees

v

Clock tree design:

> balanced trees
» clustering sinks with bounds on Steiner tree lengths

v

Routing:
» packing Steiner trees
» fast search for paths and Steiner trees in huge grids

Characteristics of the instances

» Third dimension very small, can often be neglected

» Number of terminals mostly small, but some very large
instances (with millions of terminals)

» Completely blocked regions do not occur often

» Billions of instances must be solved

Shortest rectilinear Steiner trees

vV v.v Yy

NP-hard (Garey, Johnson [1977])
approximation scheme (Arora [1998])
theorems of Hanan [1966] and Hwang [1976]

exact algorithm for up to 10000 terminals:
GeoSteiner (Warme, Winter, Zachariasen [2000])

fast exact algorithm for up to 9 terminals:
FLUTE (Chu, Wong [2008])

» fast approximation algorithm: modification of Prim’s algorithm

» many heuristics ...

FLUTE (Chu, Wong [2008]) R A%

¥s
> Let | = {(x1,¥n)+ (Xn, ¥m,)} 1
with {m1,...,m} = {1,...,n}, §4 "1
xp << xpoand yy <o <y, 3 ?
» For each permutation w Y, 1
there is a finite set of Steiner trees T 1
that are part of the Hanan grid. Y 1 2' 21

» For such a tree T let
X(T) =Xy, .oy Xn—1, Y1, -+, Y1),
where X; is the number of edges {(x;j,y), (Xj+1,y)} for some y,
and Yj is defined analogously (j =1,...,n—1).

» Store all minimal vectors x(T) in a table.

For n = 9 there are about 107 such vectors.

» By simple reductions and symmetry this can be reduced
significantly and the vector with the smallest scalar product
with (%2 — X1, ..., Xn — Xp—1,¥2 — Y1,---+¥Yn — Yn—1) Can be
found very fast (for n <9).

Modification of Prim’s algorithm

» Start with a single terminal s, T = ({s},0).

» For a terminal t ¢ V(T) and an edge {v,w} € E(T) let
d(t,v,w) =
mingega(|[t — z|[1 + [lv — z[l1 + [[w — z[[s = |lv — w]}).
> Insert t via z into {v, w} where the minimum (over all
t,v,w,z) is attained.

» lterate until all terminals are inserted.

Theorem (folklore)

The resulting Steiner tree is at most 1.5 times longer than optimal.

Proof of performance guarantee J

Theorem (folklore)

The resulting Steiner tree is at most 1.5 times longer than optimal.

Proof

» Let T; be the forest T after / iterations of the algorithm
(i=1,...,n=1).

> Let Zy be a minimum spanning tree for the terminals.

» For i=1,...,n—1 let Z; be a tree with V(Z;) = V(T;) and
E(T) C E(Z)) € E(T;) U (E(Z-1 N E(Z)).

» Then c(E(Zi-1)) > c(E(Z)) fori=1,...,n—1.

» Note that Z,_1 = T,-1 and c(E(Zp)) is at most % times the
cost of an optimum Steiner tree. O

Number of instances and running times

terminals

instances

total runtime

© 00 NO Ol WN

10

< 100

< 1000

< 10000
< 100000
< 1000000

3726352
598625
294251
145700

75444
43516
27528
26779
19972
130358
1392
53

21

3

11.095 sec
2.303 sec
1.282 sec
0.741 sec
0.577 sec
0.394 sec
0.301 sec
0.464 sec
0.282 sec
8.500 sec
1.917 sec
5.015 sec

11.806 sec

34.749 sec

Instances up to 9 terminals solved optimally. Other trees < 2%
longer on average. Total length < 0.1 % longer than optimum.

Placement: modeling hyperedges (multi-terminal nets)

Let

N be a finite set of points in the plane. Define net models:

STEINER(N) := length of an optimum rectilinear Steiner tree
for N. This is expected to be close to the actual routing length.

BB(N) = — mi — mi .
(N) := maxx(p) — min x(p) + maxy(p) — miny(p)

MST(N) := length of a minimum spanning tree for N, where
edge weights are rectilinear distances.

cLIQUE(N) = ,Nf_l > (x(p)=x(P)|+Iy(p)=y(P)).
p,p'€N
STAR(N) = min 3 (x(p) = | +1v(p) =)

peN

Worst case ratios of various net models

Entry (r,c) is sup % over all point sets N with |[N| =n € N.
’ H BB ‘ STEINER‘ MST ‘ CLIQUE ‘ STAR
BB 1 1 1 - .
n—1
sTEL || TVAl+] =52) 1 {g (04 1
NER [Vin=2] | 3 1 (n#4)
2 4
| Y2n1il | 140 (1) & (n=3)
" 3
3 _a
MST 3 . ; (=8
Z+3 3 s (n=5)
V2 + 3 3 ey
ouque| [| YU 1
STAR 13] 5] 12] ?;Wl)

(Hwang [1976], Brenner, V. [2001], Rautenbach [2004])

Net models in placement

» STEINER is best, but NP-hard to compute

» all others can be computed in O(n) time (BB, STAR)
or in O(nlog n) time (MST, CLIQUE).

» in quadratic placement:
; 2 2
min) ((Xv —xw)? + (Vv — Yw))
e={v,w}€E(G)

CLIQUE and STAR are used

» BB is often used as a simple measure. As most nets have few
pins, this is not too bad.

Clique is the best topology-independent net model

Theorem

For n > 2, a connected graph G with {1,...,n} C V(G),
c:E(G) = Rsg, and p: {1,...,n} — R? Jet

M(G,C)(p) =

min{ S @) —p(wlls | p: VIGNL...,n} — RZ}.
e={v,w}€E(G)

Then the ratio of supremum and infimum of

McaP|p: {1, n} = B2 stenver({p(D). .., p(n)}) = 1}

is minimum for the complete graph K, with unit weights.
(Brenner, V. [2001])

Steiner trees in timing optimization

Instance:
» aroot r € R?,
> a finite set S C R? of sinks,

» for each sink s € S a maximal feasible delay dmax(s)

Task: Compute
» an arborescence A rooted at r whose set of sinks is S, and
» ¢ V(A)\ ({r}uS) — R?
such that t(r) := min{0, minscs(dmax(s) — delay(ay)(r,s))} is
maximum, and the total length is minimum.

Unbuffered (“RC-optimal”) trees

Standard delay model:

» capacitance c. and resistance re of an edge e proportional to
its length

» downstream capacitance C, of a vertex v given for sinks and
recursively defined by C, := 3, w)es+(v)(ce + Cw).
» resistance R of source given.
> delay(ay)(r;s) = RC, + 2e=(v.w)eAy 4 re(3ce + Cw),
where A|, g is the r-s-path in A.
(Elmore [1948])

» NP-hard (Boese, Kahng, McCoy, Robin [1994])
» in general no optimal solution is part of the Hanan grid.
» Kadodi [1999] and Peyer [2000] gave algorithms for n < 4.

» no finite algorithm known in general.

Buffered trees: using inverters as repeaters

nor

~buffer
L
nand inverter
1> >
o
or >
D >
o

Buffered trees: an inverter tree

N~
L~
st
D .
> 5
)
2 S~ 2
r L~
D > -
3
s DC s

A

Fast and short repeater tree topologies

New delay model:
delay(a)(r,s) =
(dist(v,w) + (1% (v)|-1)).
(v,w)€A[r,s]
where dist denotes ¢1-distance.

N

[

Exact delay after buffering (ns)

1
Estimated delay (ns)

Fact 1: Huffman coding yields optimum latency, but with length

ZSES diSt(ra 5)'
Fact 2: Starting with an isolated root and successively inserting a

closest sink is a %—approximation for the Steiner tree problem.

Fast and short repeater tree topologies

Proposed Algorithm:

> Sort the sinks by dmax(s) — dist(r,s), in nondecreasing order.

» Start by connecting the first sink to the root.

» Then successively insert the sinks in the above order. Insert s
into edge e € E(A) such that
min{dmax(s’) — delaya(r,s’) : s’ € V(A)} is maximum, or the
total length is minimum, or a linear combination.

Theorem
If all distances are zero, this also results in the optimum, namely

t(r) = — [logy (Sses 299}

Experimental results show that in average, these trees are 0.66%
longer or 0.22ps worse than the optimum.
(Bartoschek, Held, Rautenbach, V. [2006])

Example of a real inverter tree

. 1 IEI
5 HE E B -} *
P -

all “® -t
¥ =N
J g

blue: source, green: 19 sinks, orange: 9 inverters colored lines: nets

Distributing a signal to many terminals: sink clustering

blue: sinks (terminals, clients) red: drivers (facilities)

Sink clustering problem
Instance:
» metric space (V, ¢),
> finite set D C V (terminals/clients),
» demands d : D — R4,
» facility opening cost f € R,
» capacity u € Ry

Task: Find a partition D = D;U---UD, and
Steiner trees T; for D; (i =1,..., k) with

c(E(Ti)) +d(Di) <u
for i:l,...,ksuch that

Zc E(Ti)+k-f
i=1

is minimum.

Approximation algorithms

Proposition
» There is no (1.5 — €)-approximation algorithm (for any ¢ > 0)
unless P = NP.

> There is no (2 — €)-approximation algorithm (for any ¢ > 0) for
any class of metrics where the Steiner tree problem cannot be

solved exactly in polynomial time.

Theorem
» There is a polynomial-time 4.099-approximation algorithm for
general metric spaces.
» There is an O(nlog n)-time 4-approximation algorithm for the
rectilinear plane.

(MaBberg and V. [2005])

Extensions

» wires must avoid routing blockages
» repeaters cannot be placed on macros

» thus, unbuffered trees may cross most macros, but not by a
long distance

» different wiring planes, with different electrical properties,
should be considered

» routing congestion should be avoided

» placement space is limited, too

Steiner trees in routing

Now compute the exact layout for each net
Wire shapes must follow certain rules for manufacturability

Wires for different nets must be apart from each other

vV v v VY

Take previously computed information (e.g., layer assignment)
into account

v

Observe timing constraints, optimize power consumption or
yield

Steiner trees in routing: general approach

» Split task into global and detailed routing

Global routing includes global optimization, packing Steiner
trees

» Detailed routing considers one net at a time

v

vV v . v. v Y

model routing space by a kind of 3-dimensional grid graph
(“track graph”, with currently up to 10! vertices)

vertex and edge weights

Steiner tree algorithms (like Dreyfus-Wagner): too slow
compose Steiner trees of paths

Dijkstra in standard form: too slow

very fast variants of Dijkstra's algorithm are used here

Summary

Steiner trees ubiquious in chip design

minimum length Steiner trees is just one subproblem

different objectives in placement, timing optimization, routing
early estimates should match final realization

many instances

vV v v v v Y

most, but not all, have only few terminals

