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Global routing

contract regions of approx. 100x100 points to a single vertex
compute capacities of edges between adjacent regions

global optimization of objective functions

define a detailed routing area for each net according to its
Steiner tree
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» pack Steiner trees with respect to these edge capacities
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Output of global routing: a corridor for each net




Global routing: simplified problem formulation

Instance:

» a global routing (grid) graph with edge capacities
» a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

» the edge capacities are respected,

» some objective function (e.g., netlength, yield, or power) is
optimized,

» and the timing constraints are met.

Even simple special cases are NP-hard!



Fractional relaxation: multicommodity flow problem

Instance:
» an undirected graph G with capacities v : E(G) — Z4 and
lengths /: E(G) — R
» a family NV of nets (terminal pairs) with demands w : N' — Z,.
and weights ¢ : N' — Z

Task: Find a flow fy for each N of value w(N) such that

> fn(e) < u(e) for e € E(G),
NeN

> en Z is minimum.

NeN  ecE(G

and



Multicommodity flows: positive results

» Can be solved by linear programming (but too slow)

» There are combinatorial fully polynomial approximation
schemes for the MULTICOMMODITY FLOW PROBLEM:
Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein,
Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991],
Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996],
Garg, Kédnemann [1998], Fleischer [2000], Karakostas [2002]

» If edges have sufficient capacity, randomized rounding can
be applied to get an integral solution violating capacity
constraints only slightly (Raghavan, Thompson [1987,1991],
Raghavan [1988])

» This can be applied to Steiner trees instead of paths, works
efficiently for large global routing instances (Albrecht [2001])

But this does not take timing constraints and global objectives
(power consumption, yield) into account.



Example: global routing congestion map
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Constraints and objectives in routing

meet timing constraints

» all signals must arrive in time
» delays depend on electrical capacitances of nets

» capacitance of a net depends on length, width, plane, and
distance to neighbour wires (nonlinearly!)

minimize power consumption

» power consumption roughly proportional to the electrical
capacitance, weighted by switching activity

minimize cost

» minimize number of masks (number of routing planes),
maximize yield (spreading), minimize design effort



Capacitance estimation

» area capacitance (parallel plate capacitor) — proportional to
length times width

» fringing capacitance — proportional to length

» coupling capacitance — proportional to length, inversely
proportional to distance to neighbour

wire adjacent

e

silicon substrate




Assign extra space to global wires

We assign to each net ¢ € C an element of

B = {(b,b)e0,1]5 xRS
b incidence vector of a Steiner tree for c,
be=0==> b, =0forallec E(G)}.

» be = 1if and only if the Steiner tree for this net uses edge e.
» b, is the extra space allocated to ¢ € C along edge e.

» Total capacitance of a wire along e can be estimated as a
function of bj.



Min-max resource sharing
Instance

» finite sets R of resources and C of customers
» for each c € C:

» a convex set B; of feasible solutions (a block) and
» a convex resource consumption function g. : B, — RE

» given by an oracle function f; : RY — B. with
beB;
for all w € R and some ¢ € R, (a block solver).

Task

» Find a b, € B, for each ¢ € C with minimum congestion

max » (gc(be))r -
rer
ceC



Application to global routing

Given a global routing graph (3D grid with millions of vertices).
» Customers = nets (sets of pins; roughly: sets of vertices)

» Resources = edge capacities, power consumption, yield
loss, timing constraints, ...

» Obijective function is transformed into a constraint

» Block = (convex hull of) set of Steiner trees for a net, with
space consumption for each edge

» Resource consumption is nonlinear (but convex) for yield
loss, timing, power consumption

» Block solver = approximation algorithm for the Steiner tree
problem in the global routing graph (with edge weights)



Yield analysis: critical area

Consider faults caused by particles with size distribution

. 0,r<n
f(r).{ S >

for some ry € R, smaller than the smallest possible particle that
can cause a fault, and ¢ such that [ f(r)dr = 1.

Then the critical area w.r.t. extra material faults on plane z is

CAZ,, = / / / f(r)drdydx,
x Jy Jtem(x,y,2)

where tem(X, y, Z) is the smallest size of a particle that causes an
extra material fault at location (x, y, z).



Dependence of critical area on area consumption

Example: Critical area of unit length wire of minimum width

Critical area
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Yield analysis: expected number of faults

Weighted sum of critical areas is used to estimate the number of
extra material faults per chip:

Fem := Z ngCAgm
z

Analogously define the number of miss material faults on wire
planes, Fm, and on via planes, F,n.

Define the estimated total number of faults per chip as
F:=Fem + Fwm + Fum.

The percentage of chips without a fault from one of the above
classes is estimated by

The complement 1 — e~F is called the wiring yield loss.



Modeling yield loss as resource

Be = conv(B;) = conv({(b, b') € [0,1]5(@ x R

vy

v

vy

b incidence vector of a Steiner tree for c,
be=0=> b, =0forallec E(G)}).

b, is the extra space allocated to net ¢ € C along edge e.
model cost (wiring yield loss) depending on extra space by
functions y¢ce : R — R, forc € C and e € E(G).

Here ~¢ o(X) is the estimated contribution of edge e, if used
by net ¢ with allocated space minwidth(c, €) + x, to the wiring
yield loss (similar for power consumption, delay of a path).
Note that the functions v ¢ are convex (c € C, e € E(G)).
Resource consumption for new resource -y is given by

1 b,
gé(b. b/) T Z be - e, <be>
ecE(G):be>0 €

for (b, b') € B¢, where T is an upper bound.



Randomized rounding

> Let B; C Be with B; = conv(Be).
» Given numbers X, > 0 for all ¢ € C and b € B¢ with
> beis, Xep = 1forallc e C.

> Let A := max,ecr Zcec Zbegc Xc,b(gc(b))r-
» We will compute a solution with

A< (1 inf b
=(1+¢) bceBIrc](ceC) Tk CEC(gC( e)r
for small € > 0.

» Consider a “randomly rounded” solution, b, € B, for ¢ € C,
given as follows.

» Independently for all ¢ € C we choose b € B as b, with
probability xc p.

> Let \:= maxrer ZceC(gC(EC))f'

Question: can we bound $ ?



Chernoff bound

Lemma

Let Xy, ..., X be independent random variables in [0, 1]. Let . be
the sum of their expectations, and let e > 0. Then

Xi + -+ Xc > (1 + €)p with probability less than e=+(<), where
fle):=(1+¢e)In(1 +¢€) —e.

Note that f(¢) > 0 for e > 0.

Proof: Let Prob[-] denote the probability of an event, and Exp|]
the expectation of a random variable. Using (1 + ¢)* < 1 + ex for
0<x<1and1+ x < ée* for x > 0 we compute

k X;
Prob[ X7 + -+ + Xk > (1 + €)u] = Prob [m > 1] <

15, (1+eX)) [T (1+eX)
Prob |:(‘|+15)(1+€)M > 1:| < EXp |: (1+1€)(1+6)#

[ e 2 e puf(e)
(+o0Fan = {geron — © : =

(Raghavan, Spencer; see Raghavan [1988] and Chernoff [1952])

_ TTE (1+eExp[Xi])
= T (rolron =




Randomized rounding

Theorem
Forr e R let p; > %Ab))’ forall b € Bc and ¢ € C, and let

p = maXer pr- Let Q := pmax {1,In (ZreR e1_£)} and

5:: (Q+e_2)1/m

Then X\ < A(1 + 6) with positive probability.

Proof (sketch):
For each resource r € R, apply the above Chernoff bound to the

independent random variables (gcp(%))’, cecC. O

(Muller, V. [2008]; see Raghavan [1988])

In practice:
Some violations occur, are fixed by “rip-up and re-route”



Critical area after detailed routing

Chip Tech. #Nets | Netl. Opt. Yield Opt.

Edgar Cu08 772,000 0.10493 | 0.08586 (—18.2%)
Hannelore | Cu08 140,000 0.01543 | 0.01027 (—33.4%)
Paul Cu08 68,000 0.00568 | 0.00402 (—29.2%)
Monika Cui11 | 1,502,000 0.09505 | 0.08055 (-15.3%)
Garry Cui1 827,000 0.08017 | 0.06714 (-16.3%)
Heidi Cu11 777,000 0.05804 | 0.04965 (—14.5%)
Elena Culi 421,000 0.03314 | 0.02966 (—10.5%)
Lotti Cui1 132,000 0.00688 | 0.00575 (-16.4%)
Ingo Cui1 58,000 0.00505 | 0.00392 (-22.4%)
Bill Cu11 11,000 0.00833 | 0.00376 (—54.9%)
Total 0.50190 | 0.41419 (-17.5%)

(Mller [2006])



Summary

» Global routing is a generalization of integer multi-commodity
flow

» fractional solutions are useful, can be made integral by
randomized rounding (with some loss)

» linear programming too slow

» combinatorial fully polynomial time approximation schemes
much better

» multi-terminal nets, nonlinear constraints and objectives (like
yield, power consumption, timing) can be modeled in terms
of the min-max resource sharing problem

» tomorrow: an efficient algorithm for this problem



