
Combinatorial Optimization
in VLSI Placement and Routing

Jens Vygen

University of Bonn

Outline

Introduction

Placement
General theory
Analytical placement
Multisection
Detailed Placement

Routing
Problem formulation, general approach
Detailed Routing
Global Routing

Example

Die Anschlüsse (Pins) der Primary Inputs E1, E2 und Primary

Outputs A1, A2 sind auf den vier Gitterpunkten in den Ecken

des Chips (vgl. Abb. 23) vorgegeben. Reale Chips haben

heute bis zu 2000 Primary I/O’s. Sie können nicht mehr nur

am Rand des Chips angeordnet werden. Sie sind vielmehr

über die Chipfläche verteilt und werden auch an diesen

Stellen direkt mit den Kontakt-Pads auf der Oberfläche ver-

bunden. Wenn die Primary I/O’s nur auf dem Rand eines

Chips liegen, werden sie direkt mit dünnen Golddrähtchen

(Bonding) nach außen verbunden.

23

Abb. 27: Logische Schaltung der Ampelsteuerung mit Zuordnung zu den Bauteilen durch Farben und Nummern.

Z1

Z2

E2

E1

A2

A1

1

2

3

4

5

10

14

18

19

15

16

1711

12

13

6

7

8

9

Example

Example

Example

Example

Example

VLSI design: overall task

Given a netlist, with primary inputs, registers, primary outputs,
complex logic cores, combinational logic,
and constraints for placement, routing, and timing, the task is to

I compute an equivalent netlist,
where registers and parts of the combinational logic can be
replaced if the Boolean function Φ : {0, 1}I → {0, 1}O

representing the netlist does not change. I contains the
primary inputs and output pins of registers and cores, and O
contains the primary outputs and input pins of registers and
cores.

I place the components of this netlist
without overlaps on the chip area,

I and route all nets
i.e. find node-disjoint Steiner trees, each connecting the pins
of a net, in a given 3-dimensional grid graph.

Combinatorial optimization in VLSI design automation

I shortest paths
I network design, in particular Steiner trees
I maximum flows, discrete time-cost tradeoff problems
I transportation and minimum cost flows
I multicommodity flows, disjoint paths and trees
I minimum mean cycles, parametric shortest paths
I facility location
I ... and others: minimum spanning trees, knapsack problem,

bin packing, traveling salesman problem, Huffman codes, ...
I ... also used: advanced data structures, computational

geometry, nonlinear programming, parallelization ...

Design flow

RTL Description

Logic Synthesis

Global Placement Timing Optimization

Clocktree Generation

Detailed Placement

Global Routing

Detailed Routing

Final Checks

Production
?

?

?

?

?

?

-
�

?

?

Design flow

RTL Description

Logic Synthesis

Global Placement Timing Optimization

Clocktree Generation

Detailed Placement

Global Routing

Detailed Routing

Final Checks

Production
?

?

?

?

?

?

-
�

?

?

Main objectives

I minimize cycle time / meet timing constraints
(all signal arrival times within prescribed time intervals)

I minimize power consumption
(depending on transistor sizes, length and widths of wires,
coupling, leakage)

I minimize cost
(area, number of masks, yield, design effort)

Main objectives in the design flow

Logic Synthesis minimize area and depth

Global Placement minimize wirelength

Timing Optimization minimize delay and power

Now, assuming an optimum Steiner tree for each net, all signals
must arrive in time.

Clocktree Generation minimize power subject to timing

Detailed Placement minimize changes

Global Routing minimize power subject to timing

Detailed Routing minimize changes

Moore’s law

million transistors on a chip

The Bonn Tools
I are developped by the Research Institute for Discrete

Mathematics at the University of Bonn,
I cover all major areas of layout and timing optimization,
I include libraries for combinatorial optimization, advanced,

data structures, computational geometry, etc.,
I have more than one million lines of code in C and C++,
I are used by IBM and its customers for almost 20 years,
I are now also used by Magma Design Automation and its

customers,
I have been used for the design of more than 1000 chips,
I including several complete microprocessor series,
I approximately hundred ASICs every year,
I and the most complex chips of major technology companies.

Outline in (Korte, Rautenbach and Vygen [2006])

Some recent chips

The Bonn group

currently consists of:

Christoph Bartoschek, Florian Berger, Ulrich Brenner,
Alexander von Dambrowski, Laura Geisen, Michael Gester,
Stephan Held, Günther Hutzl, Fritz Jahns, Johannes Klauser,
Alexander Kleff, Bernhard Korte, Immo Krupke, Jens Maßberg,
Andreas Menge, Dirk Müller, Karsten Muuss, Christian Panten,
Sven Peyer, Dieter Rautenbach, Rüdiger Schmedding,
Jan Schneider, Christian Schulte, Matthias Schwamborn,
Markus Struzyna, Jens Vygen, Jürgen Werber

Thanks to all of them.

Thanks also to our cooperation partners at IBM and Magma

Introduction

Placement
General theory
Analytical placement
Multisection
Detailed Placement

Routing

How to measure interconnect length?

Let N be a finite set of points in the plane. Define net models:

I steiner(N) is the length of an optimum rectilinear Steiner
tree for N.

I bb(N) := max
p∈N

x(p)−min
p∈N

x(p) + max
p∈N

y(p)−min
p∈N

y(p).

I mst(N) is the length of a minimum spanning tree for N,
where edge weights are rectilinear distances.

I clique(N) :=
1

|N| − 1

∑
p,p′∈N

(|x(p)−x(p′)|+|y(p)−y(p′)|).

I star(N) := min
(x ′,y ′)∈R2

∑
p∈N

(|x(p)− x ′|+ |y(p)− y ′|).

Worst case ratios of various net models

Entry (r , c) is sup c(N)
r(N) over all point sets N with |N| = n.

bb steiner mst clique star

bb 1 1 1 1 1

stei-
ner

n−1
d
√

ne+
l

n
d
√

ne

m
−2

· · ·
d
√

n−2e
2 + 3

4

1 1

{
9
8 (n = 4)

1 (n 6= 4)
1

mst

b
√

2n−1+1
2 c
· · ·

√
n√
2

+ 3
2

3
2 1

1 + Θ
(1

n

)
· · ·

3
2


4
3 (n = 3)
3
2 (n = 4)
6
5 (n = 5)

1 (n > 5)

clique d n
2 eb

n
2 c

n−1
d n

2 eb
n
2 c

n−1
d n

2 eb
n
2 c

n−1 1 1

star b n
2c b n

2c b n
2c

n−1
d n

2 e
1

(Hwang [1976], Brenner and Vygen [2001], Rautenbach [2004])

Net models in placement

I steiner is best, but NP-hard to compute
I all others can be computed in O(n) time (bb, star)

or in O(n log n) time (mst, clique).
I in quadratic placement (see below), clique and star are

used
I bb is often used as a simple measure. As most nets have few

pins, this is not too bad.

Clique is the best topology-independent net model

Theorem
For n ≥ 2, a connected graph G with {1, . . . , n} ⊆ V (G),
c : E (G) → R>0, and p : {1, . . . , n} → R2 let
M(G ,c)(p) :=

min

{ ∑
e={v ,w}∈E(G)

c(e)||p(v)−p(w)||1

∣∣∣∣∣ p : V (G)\{1, . . . , n} → R2

}
.

Then the ratio of supremum and infimum of{
M(G ,c)(p)

∣∣∣p : {1, . . . , n} → R2, steiner({p(1), . . . , p(n)}) = 1
}

is minimum for the complete graph Kn with unit weights.
(Brenner, Vygen [2001])

Placement: simplified problem formulation
Input:

I a rectangular chip area, and a set of rectangular blockages
I a finite set C of (rectangular) cells
I a finite set P of pins, and a partition N of P into nets
I a weight w(N) > 0 for each net N
I an assignment γ : P → C ∪ {�} of the pins to cells

[pins p with γ(p) = � are fixed; we set x(�) := y(�) := 0]
I offsets x(p), y(p) ∈ R of each pin p

Task:
Find a position (x(c), y(c)) ∈ R2 of each cell c such that

I each cell is contained in the chip area,
I no cell overlaps with another cell or a blockage,

and the weighted netlength∑
N∈N

w(N) bb ({(x(γ(p)) + x(p), y(γ(p)) + y(p)) : p ∈ N})

is minimum.

Why minimize netlength?

I Netlength is a good estimate for power consumption
I Short nets have small delay (net weights for critical nets!)
I Nets have to be packed in routing, and long nets take more

resources (but we must also avoid local congestion!)
I Experience shows: a good algorithm for the simplified

placement problem can be extended to a good algorithm for
real placement problems.

I Bounding box netlentgh is the main measure in benchmarks
I It’s simple. But not easy...

Special case: Quadratic Assignment Problem (QAP)

Instance: A graph G . Weights w : E (G) → R+. A set U with
|U| ≥ |V (G)|. Distances d({u, v}) ≥ 0 for all u, v ∈ U. Weights
c : V (G)× U → R+.

Task: Find an injective mapping f : V (G) → U such that∑
e={x ,y}∈E(G)

w(e)d({f (x), f (y)}) +
∑

x∈V (G),u∈U

c(x , u)d({f (x), u})

is minimum.

Theorem
Unless P = NP there is no constant-factor approximation algorithm
for the special case of the Quadratic Assignment Problem
where w(e) = 1 for all e ∈ E (G), c is identically zero, U is a finite
subset of Z and d({u, v}) = |u − v | for all u, v ∈ U.
(Queyranne [1986])

Special case: Quadratic Assignment Problem (QAP)

Instance: A graph G . Weights w : E (G) → R+. A set U with
|U| ≥ |V (G)|. Distances d({u, v}) ≥ 0 for all u, v ∈ U. Weights
c : V (G)× U → R+.

Task: Find an injective mapping f : V (G) → U such that∑
e={x ,y}∈E(G)

w(e)d({f (x), f (y)}) +
∑

x∈V (G),u∈U

c(x , u)d({f (x), u})

is minimum.

Theorem
Unless P = NP there is no constant-factor approximation algorithm
for the special case of the Quadratic Assignment Problem
where w(e) = 1 for all e ∈ E (G), c is identically zero, U is a finite
subset of Z and d({u, v}) = |u − v | for all u, v ∈ U.
(Queyranne [1986])

Proof of non-approximability
I Bin-Packing is strongly NP-hard. More precisely, it is

NP-hard to decide whether for given n ∈ N and
s1, . . . , s4n,B ∈ {1, . . . , 1010n4} there is a mapping
p : {1, . . . , 4n} → {1, . . . , n} with

∑
i∈p−1(j) si ≤ B for

j = 1, . . . , n.

I Define an instance of QAP by V (G) = {1, . . . ,
∑n

i=1 si};
E (G) := {{x , x + 1} : x ∈ V (G) \ {

∑j
i=1 si : j = 1, . . . , n}};

U := {(kn + 1)Bj + z : z = 1, . . . ,B, j = 1, . . . , n}.
I If there exists a mapping p as above, there is a placement

f : V (G) → U defined by f (
∑j−1

i=1 si + z) := (kn + 1)Bp(j)+ z
for j = 1, . . . , 4n and z = 1, . . . , sj , such that∑

e={x ,y}∈E(G) |f (x)− f (y)| = |E (G)|.
I Otherwise, for any injective mapping f : V (G) → U there is

an edge {x , y} ∈ E (G) with
|f (x)− f (y)| ≥ (kn + 1)B + 1−max4n

i=1 si ≥ knB > k|E (G)|.
I Hence a k-factor approximation algorithm for such instances

of QAP can distinguish between these two cases. �

Proof of non-approximability
I Bin-Packing is strongly NP-hard. More precisely, it is

NP-hard to decide whether for given n ∈ N and
s1, . . . , s4n,B ∈ {1, . . . , 1010n4} there is a mapping
p : {1, . . . , 4n} → {1, . . . , n} with

∑
i∈p−1(j) si ≤ B for

j = 1, . . . , n.
I Define an instance of QAP by V (G) = {1, . . . ,

∑n
i=1 si};

E (G) := {{x , x + 1} : x ∈ V (G) \ {
∑j

i=1 si : j = 1, . . . , n}};
U := {(kn + 1)Bj + z : z = 1, . . . ,B, j = 1, . . . , n}.

I If there exists a mapping p as above, there is a placement
f : V (G) → U defined by f (

∑j−1
i=1 si + z) := (kn + 1)Bp(j)+ z

for j = 1, . . . , 4n and z = 1, . . . , sj , such that∑
e={x ,y}∈E(G) |f (x)− f (y)| = |E (G)|.

I Otherwise, for any injective mapping f : V (G) → U there is
an edge {x , y} ∈ E (G) with
|f (x)− f (y)| ≥ (kn + 1)B + 1−max4n

i=1 si ≥ knB > k|E (G)|.
I Hence a k-factor approximation algorithm for such instances

of QAP can distinguish between these two cases. �

Proof of non-approximability
I Bin-Packing is strongly NP-hard. More precisely, it is

NP-hard to decide whether for given n ∈ N and
s1, . . . , s4n,B ∈ {1, . . . , 1010n4} there is a mapping
p : {1, . . . , 4n} → {1, . . . , n} with

∑
i∈p−1(j) si ≤ B for

j = 1, . . . , n.
I Define an instance of QAP by V (G) = {1, . . . ,

∑n
i=1 si};

E (G) := {{x , x + 1} : x ∈ V (G) \ {
∑j

i=1 si : j = 1, . . . , n}};
U := {(kn + 1)Bj + z : z = 1, . . . ,B, j = 1, . . . , n}.

I If there exists a mapping p as above, there is a placement
f : V (G) → U defined by f (

∑j−1
i=1 si + z) := (kn + 1)Bp(j)+ z

for j = 1, . . . , 4n and z = 1, . . . , sj , such that∑
e={x ,y}∈E(G) |f (x)− f (y)| = |E (G)|.

I Otherwise, for any injective mapping f : V (G) → U there is
an edge {x , y} ∈ E (G) with
|f (x)− f (y)| ≥ (kn + 1)B + 1−max4n

i=1 si ≥ knB > k|E (G)|.
I Hence a k-factor approximation algorithm for such instances

of QAP can distinguish between these two cases. �

Proof of non-approximability
I Bin-Packing is strongly NP-hard. More precisely, it is

NP-hard to decide whether for given n ∈ N and
s1, . . . , s4n,B ∈ {1, . . . , 1010n4} there is a mapping
p : {1, . . . , 4n} → {1, . . . , n} with

∑
i∈p−1(j) si ≤ B for

j = 1, . . . , n.
I Define an instance of QAP by V (G) = {1, . . . ,

∑n
i=1 si};

E (G) := {{x , x + 1} : x ∈ V (G) \ {
∑j

i=1 si : j = 1, . . . , n}};
U := {(kn + 1)Bj + z : z = 1, . . . ,B, j = 1, . . . , n}.

I If there exists a mapping p as above, there is a placement
f : V (G) → U defined by f (

∑j−1
i=1 si + z) := (kn + 1)Bp(j)+ z

for j = 1, . . . , 4n and z = 1, . . . , sj , such that∑
e={x ,y}∈E(G) |f (x)− f (y)| = |E (G)|.

I Otherwise, for any injective mapping f : V (G) → U there is
an edge {x , y} ∈ E (G) with
|f (x)− f (y)| ≥ (kn + 1)B + 1−max4n

i=1 si ≥ knB > k|E (G)|.

I Hence a k-factor approximation algorithm for such instances
of QAP can distinguish between these two cases. �

Proof of non-approximability
I Bin-Packing is strongly NP-hard. More precisely, it is

NP-hard to decide whether for given n ∈ N and
s1, . . . , s4n,B ∈ {1, . . . , 1010n4} there is a mapping
p : {1, . . . , 4n} → {1, . . . , n} with

∑
i∈p−1(j) si ≤ B for

j = 1, . . . , n.
I Define an instance of QAP by V (G) = {1, . . . ,

∑n
i=1 si};

E (G) := {{x , x + 1} : x ∈ V (G) \ {
∑j

i=1 si : j = 1, . . . , n}};
U := {(kn + 1)Bj + z : z = 1, . . . ,B, j = 1, . . . , n}.

I If there exists a mapping p as above, there is a placement
f : V (G) → U defined by f (

∑j−1
i=1 si + z) := (kn + 1)Bp(j)+ z

for j = 1, . . . , 4n and z = 1, . . . , sj , such that∑
e={x ,y}∈E(G) |f (x)− f (y)| = |E (G)|.

I Otherwise, for any injective mapping f : V (G) → U there is
an edge {x , y} ∈ E (G) with
|f (x)− f (y)| ≥ (kn + 1)B + 1−max4n

i=1 si ≥ knB > k|E (G)|.
I Hence a k-factor approximation algorithm for such instances

of QAP can distinguish between these two cases. �

Positive results

There are only few, and these are not very useful.

Special case: Optimum Linear Arrangement Problem
Given a graph G with n := |V (G)|, we ask for a bĳection
f : V (G) → {1, . . . , n} minimizing

∑
{x ,y}∈E(G) |f (x)− f (y)|.

I Even this problem is NP-hard. (Garey, Johnson [1976])
I There is an O(

√
log n log log n)-factor approximation

algorithm. (Charikar, Hajiaghayi, Karloff, Rao [2006])
I However, the problem is not known to be MAXSNP-hard!

Polylogarithmic approximation algorithm also for some
two-dimensional problems
(Even, Naor, Rao, Schieber [2000], Even, Guha, Schieber [2003],
Vempala [1998])

Placement approaches in practice

I simulated annealing: start with any placement and try to
improve it
(mostly used in the 80s)

I min-cut: successive bisection, with simple exchange heuristics
(mostly used in the 90s)

I analytical placement: minimize either linear or quadratic
netlength estimate, then work towards disjointness
(dominant strategy today)

Here we discuss analytical placement only.

Minimizing weighted netlength

min
∑

N∈N
w(N)(XN + YN)

where

XN := max{x(γ(p))+x(p) : p ∈ N}−min{x(γ(p))+x(p) : p ∈ N}

YN := max{y(γ(p))+y(p) : p ∈ N}−min{y(γ(p))+y(p) : p ∈ N}

Net weights w(N) reflect timing criticality (slack, Lagrange
multipliers).

Minimizing weighted netlength

Equivalent formulation:

min
∑

N∈N
w(N)(r(N)− l(N) + t(N)− b(N))

subject to

l(N) ≤ x(γ(p)) + x(p) ≤ r(N) (p ∈ N ∈ N)

b(N) ≤ y(γ(p)) + y(p) ≤ t(N) (p ∈ N ∈ N)

This is the dual of a minimum cost flow problem.
(Cabot, Francis and Stary [1970])

Minimizing weighted netlength

Equivalent formulation:

min
∑

N∈N
w(N)(r(N)− l(N) + t(N)− b(N))

subject to

l(N) ≤ x(γ(p)) + x(p) ≤ r(N) (p ∈ N ∈ N)

b(N) ≤ y(γ(p)) + y(p) ≤ t(N) (p ∈ N ∈ N)

This is the dual of a minimum cost flow problem.
(Cabot, Francis and Stary [1970])

Quadratic placement (QP)

min
∑

N∈N

w(N)

|N|−1

∑
p,q∈N

(Xp,q + Yp,q)

where
Xp,q := |x(γ(p)) + x(p)− x(γ(q))− x(q)|2

and
Yp,q := |y(γ(p)) + y(p)− y(γ(q))− y(q)|2

The placement where this minimum is attained is unique if the
netlist is connected. It is called quadratic placement.

Why using quadratic placement?

I QP can be solved very fast (conjugate gradient method)
I Delay along unbuffered wires grows quadratically with length
I QP gives a lot of information on relative positions
I QP is stable:

Theorem
Small netlist changes imply small changes of QP solution.
In contrast, min-cut and local search are unstable.
(Vygen [2002])

Minimizing linear versus quadratic netlength

placement with minimum quadratic placement
bounding box netlength

Global placement by successive partitioning
Remove overlaps by successive quadrisection.

Successively distribute the set C of cells to regions R.

Quadratic placement with an array of regions

min
∑

N∈N

w(N)

|N|−1

∑
p,q∈N

(Xp,q + Yp,q)

where Xp,q is
I |x(γ(p)) + x(p)− x(γ(q))− x(q)|2 if γ(p) and γ(q) are cells

assigned to regions in the same column.
I |x(γ(p)) + x(p)− b|2 + |x(γ(q)) + x(q)− a′|2 if γ(p) is a cell

assigned to a region with x-range [a, b], γ(q) is a cell assigned
to a region with x-range [a′, b′] and b ≤ a′.

I |x(γ(p)) + x(p)− v |2 if γ(p) is a cell assigned to a region
with x-range [a, b], q is fixed, and v = max{a,min{b, x(q)}}.

I 0 if p and q are both fixed.
Yp,q is defined analogously, but with respect to y -coordinates, and
with rows playing the role of columns.
(Vygen [1997])

Replace large cliques by stars

The running time of the conjugate gradient method depends on
I the condition of the matrix (we apply incomplete Cholesky

preconditioning)
I the number of variables (cells) and
I the number of connected pin pairs

Therefore, one should replace large cliques, i.e. sets of pins
belonging to the same net and to cells in the same column (row)
by a stars: introduce a new variable (representing the center of the
star) and connect it to each of the pins.

With appropriate weights, this does not change the result.

A single partitioning step

Let C be a set of cells, each with a size,
and R a set of (sub)regions, each with a capacity.

Task: Find an assignment f : C → R
meeting the capacity constraints∑

c∈C :f (c)=r

size(c) ≤ cap(r) for all r ∈ R

such that the total movement∑
c∈C

d(c, f (c))

is minimum.
Here d denotes, e.g., the `1-distance.

But partitioning is hard

Even the problem to decide whether a feasible assignment exists is
NP-hard (it contains the Partition problem).

For the same reason it is NP-hard to decide whether a feasible
placement exists.

However, for global placement this is only of theoretical interest.

Fractional relaxation: Hitchcock (transportation) problem

Find g : C × R → R+

with ∑
r∈R

g(c, r)=size(c) for all c ∈ C

and ∑
c∈C

g(c, r) ≤ cap(r) for all r ∈ R

such that ∑
c∈C

∑
r∈R

g(c, r)d(c, r)

is minimum.
Note: |R| � |C |.

Solving the fractional relaxation is sufficient

Proposition
From any optimum solution to the fractional relaxation we can
obtain another one in O(|C ||R|2) time that is integral up to
|R| − 1 cells.

Proof.
Define V (G) := R and E (G) := {{r , r ′} : c ∈ C , g(c, r) >
0, g(c, r ′) > 0, g(c, r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}}.
While G contains a cycle, consider g ′ and g ′′ that result from g by
moving the same amount of flow around the cycle in each direction.
Both g ′ and g ′′ must be optimum solutions.
The number of cell fractions decreases. Iterate.

(Vygen [1996,2005])

Solving the fractional relaxation is sufficient

Proposition
From any optimum solution to the fractional relaxation we can
obtain another one in O(|C ||R|2) time that is integral up to
|R| − 1 cells.

Proof.
Define V (G) := R and E (G) := {{r , r ′} : c ∈ C , g(c, r) >
0, g(c, r ′) > 0, g(c, r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}}.

While G contains a cycle, consider g ′ and g ′′ that result from g by
moving the same amount of flow around the cycle in each direction.
Both g ′ and g ′′ must be optimum solutions.
The number of cell fractions decreases. Iterate.

(Vygen [1996,2005])

Solving the fractional relaxation is sufficient

Proposition
From any optimum solution to the fractional relaxation we can
obtain another one in O(|C ||R|2) time that is integral up to
|R| − 1 cells.

Proof.
Define V (G) := R and E (G) := {{r , r ′} : c ∈ C , g(c, r) >
0, g(c, r ′) > 0, g(c, r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}}.
While G contains a cycle, consider g ′ and g ′′ that result from g by
moving the same amount of flow around the cycle in each direction.

Both g ′ and g ′′ must be optimum solutions.
The number of cell fractions decreases. Iterate.

(Vygen [1996,2005])

Solving the fractional relaxation is sufficient

Proposition
From any optimum solution to the fractional relaxation we can
obtain another one in O(|C ||R|2) time that is integral up to
|R| − 1 cells.

Proof.
Define V (G) := R and E (G) := {{r , r ′} : c ∈ C , g(c, r) >
0, g(c, r ′) > 0, g(c, r ′′) = 0 for r ′′ ∈ {1, . . . ,max{r , r ′}} \ {r , r ′}}.
While G contains a cycle, consider g ′ and g ′′ that result from g by
moving the same amount of flow around the cycle in each direction.
Both g ′ and g ′′ must be optimum solutions.
The number of cell fractions decreases. Iterate.

(Vygen [1996,2005])

Special case: quadrisection

Theorem
If R consists of the four quadrants and d is the weighted
`1-distance, then

I there is an optimal solution to the fractional relaxation that
corresponds to an American map:

@
@@L0 L1

L2
L3

L0 L1

L2L3

L0
L1

L2L3

I such a solution can be found efficiently in O(n) time.

(Vygen [1996, 2005])

Quadrisection based on quadratic placement

General case: Hitchcock Problem

Let G be the digraph with V (G) := C ∪̇R and E (G) := C × R.
Let b(c) := size(c) for c ∈ C and b(r) := −cap(r) for r ∈ R.
Let cost((c, r)) := d((c,r))

size(c)
(c ∈ C , r ∈ R)

��

��

��

��

�	

�

�

��

��

��

��

��

��

� ��

C

R

u((c, r)) = ∞

cost((c, r))

b(c) := size(c)

b(r) := −cap(r)

Task: Find an uncapacitated b-flow in G of minimum cost.

Algorithms for the Hitchcock problem

Let n := |C | and k := |R|. We assume n ≥ k.

I O(n log n(n log n + kn)): general transshipment algorithm
(Orlin [1993])

I O(n f (k)) with exponential functions f , inefficient already for
very small k: Dyer [1984], Zemel [1984], Tokuyama, Nakano
[1991], Meggido, Tamir [1993], Matsui [1993]

I O(nk2 log2 n) Tokuyama, Nakano [1992, 1995]
I New algorithm: O(nk2(log n + k log k)): Brenner [2005]

Residual graph

Given f : E (G) → R+, we define the residual graph Gf as follows.

I V (Gf) := V (G) ∪ {t}.
I E (Gf) contains all arcs e ∈ E (G), with uf (e) := ∞.
I For each arc (c, r) ∈ E (G) with f ((c, r)) > 0, E (Gf) contains

the backward arc (r , c) with uf ((r , c)) := f ((c, r)).
I For each r ∈ R with f (δ−(r)) + b(r) < 0, E (Gf) contains the

arc (r , t) with uf ((r , t)) := −b(r)− f (δ−(r)).

Successive shortest path algorithm

Input: An instance (G , b, cost) of the Hitchcock Problem.
Output: A minimum cost b-flow f in G .

À f (e) := 0 for e ∈ E (G).
Á Let C = {c1, . . . , cn}.
Â For i := 1 to n:

While f (δ+(ci)) < b(ci):
Find a shortest ci -t-path P in Gf .

γ := min
{

min
e∈E(P)

uf (e), b(ci)− f (δ+(ci))

}
.

Augment f along P by γ.

Idea: Replace each phase (iteration of the outer loop) by one
min-cost flow computation in a graph whose size depends on k
only.

Lemma on almost integral solutions

Definition: Let f be a solution of the Hitchcock Problem.
For c ∈ C let τf (c) := |{r ∈ R : f ((c, r)) > 0}|.
Let Ff := {c ∈ C : τf (c) > 1}.

Lemma
Given an instance (G , b, u, cost) of the Hitchcock Problem,
an optimum solution f , and the set Ff , we can transform f in
O(k ·

∑
c∈Ff

τf (c)) time into an optimum solution g such that:
I |Fg | ≤ k − 1, and
I
∑

c∈Fg

τg (c) ≤ 2k − 2.

General strategy

I Sort the cells such that size(c1) ≥ size(c2) ≥ · · · ≥ size(cn).
I We will show: In each phase we have to change the flow only

on O(k2) arcs.

Notation

I Let fi−1 be the flow at the beginning of phase i .
I For r ∈ R let M i

r := {c ∈ C : fi−1((c, r)) = size(c)}.
I If M i

r 6= ∅ for r ∈ R, then choose for each q ∈ R \ {r} an
arbitrary c i

r ,q ∈ M i
r with

cost((c i
r ,q, q))− cost((c i

r ,q, r)) =

min
{

cost((c ′, q))− cost((c ′, r)) : c ′ ∈ M i
r

}
.

The subgraph Gi

V (Gi) := R ∪ {t}
∪ {ci} ∪ Ffi−1

∪{c i
r ,q : r , q ∈ R, r 6= q, M i

r 6= ∅}

E (Gi) := (R × {t})
∪ ({ci} × R)

∪ (Ffi−1 × R)

∪{(c i
r ,q, r) : r , q ∈ R, M i

r 6= ∅}
∪ {(c i

r ,q, q) : r , q ∈ R, M i
r 6= ∅}

⇒ Gi has O(k2) vertices and O(k2) arcs.

Main lemma
In phase i we can choose augmenting paths such that there are no
two subsequent arcs (r , c), (c, q) with c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Proof (Sketch).
Consider a sequence of shortest augmenting paths in Gfi−1 .
Consider the first path that contains arcs (r , c), (c, q) with
c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Then c ∈ M i
p for some p ∈ R.

Case 1: p = r . Replace c by c i
r ,q in the augmenting path.

c

c i
r ,q

r

q

cost of new subpath
= cost((c i

r ,q, q)− cost((c i
r ,q, r))

≤ cost((c, q))− cost((c, r))
= cost of old subpath

Case 2: p 6= r . Replace (c, q) by (c, p, c i
p,q, q) in the augmenting

path.

Main lemma
In phase i we can choose augmenting paths such that there are no
two subsequent arcs (r , c), (c, q) with c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Proof (Sketch).
Consider a sequence of shortest augmenting paths in Gfi−1 .
Consider the first path that contains arcs (r , c), (c, q) with
c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Then c ∈ M i
p for some p ∈ R.

Case 1: p = r . Replace c by c i
r ,q in the augmenting path.

c

c i
r ,q

r

q

cost of new subpath
= cost((c i

r ,q, q)− cost((c i
r ,q, r))

≤ cost((c, q))− cost((c, r))
= cost of old subpath

Case 2: p 6= r . Replace (c, q) by (c, p, c i
p,q, q) in the augmenting

path.

Main lemma
In phase i we can choose augmenting paths such that there are no
two subsequent arcs (r , c), (c, q) with c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Proof (Sketch).
Consider a sequence of shortest augmenting paths in Gfi−1 .
Consider the first path that contains arcs (r , c), (c, q) with
c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Then c ∈ M i
p for some p ∈ R.

Case 1: p = r . Replace c by c i
r ,q in the augmenting path.

c

c i
r ,q

r

q

cost of new subpath
= cost((c i

r ,q, q)− cost((c i
r ,q, r))

≤ cost((c, q))− cost((c, r))
= cost of old subpath

Case 2: p 6= r . Replace (c, q) by (c, p, c i
p,q, q) in the augmenting

path.

Main lemma
In phase i we can choose augmenting paths such that there are no
two subsequent arcs (r , c), (c, q) with c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Proof (Sketch).
Consider a sequence of shortest augmenting paths in Gfi−1 .
Consider the first path that contains arcs (r , c), (c, q) with
c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Then c ∈ M i
p for some p ∈ R.

Case 1: p = r . Replace c by c i
r ,q in the augmenting path.

c

c i
r ,q

r

q

cost of new subpath
= cost((c i

r ,q, q)− cost((c i
r ,q, r))

≤ cost((c, q))− cost((c, r))
= cost of old subpath

Case 2: p 6= r . Replace (c, q) by (c, p, c i
p,q, q) in the augmenting

path.

Main lemma
In phase i we can choose augmenting paths such that there are no
two subsequent arcs (r , c), (c, q) with c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Proof (Sketch).
Consider a sequence of shortest augmenting paths in Gfi−1 .
Consider the first path that contains arcs (r , c), (c, q) with
c ∈ C \ (Ffi−1 ∪ {c i

r ,q, c i
q,r}).

Then c ∈ M i
p for some p ∈ R.

Case 1: p = r . Replace c by c i
r ,q in the augmenting path.

c

c i
r ,q

r

q

cost of new subpath
= cost((c i

r ,q, q)− cost((c i
r ,q, r))

≤ cost((c, q))− cost((c, r))
= cost of old subpath

Case 2: p 6= r . Replace (c, q) by (c, p, c i
p,q, q) in the augmenting

path.

Main proof (sketch)

I After phase i , we adjust the flow fi such that |Ffi | ≤ k − 1
and

∑
c∈Ffi

τfi (c) ≤ 2k − 2.

I Two more modifications:
I Replace each c i

r ,q (with its two incident arcs) by one
uncapacitated arc from r to q. ⇒ Only O(k) vertices remain.

I Only O(k) arcs (entering the elements of Ffi−1) have finite
capacity. Replace each of them equivalently by two
uncapacitated arcs. ⇒ All arcs are uncapacitated.

I Thus, if Gi is given, a phase can be computed in
O(k log k(k2 + k log k)) = O(k3 log k) time (Orlin[1993])

I By storing the sets M i
r in heaps, Gi can be computed from

Gi−1 in O(k2 log n) time.
I In each phase: O(k2) insert and remove operations suffice.
I Time to adjust the flow after a phase: O(k3).
I Total running time: O(nk2(log n + k log k)). �

Multisection example

QP and quadrisection in BonnPlace

Level 0 Level 1 Level 2

Level 3 Level 4 Level 5

Further major components of BonnPlace global placement

I Repartitioning
I Congestion-driven placement
I Macro placement

Repartitioning

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

for all 2 × 2 subar-
rays of regions do:

I free QP
I quadrisection
I QP w.r.t. new

assignment
I check if new

solution is
better

Congestion-driven placement

Macro placement

Detailed placement

After global placement we have an optimized but illegal placement.

→
We want to legalize it without changing it too much.

The legalization problem
Input:

I a rectangular chip area
I a set of rectangular blockages
I a set C of rectangular cells with unit height
I a width w(c) and a position (x(c), y(c)) ∈ R2 of each cell

c ∈ C .

Task:
Find new positions (x ′(c), y ′(c)) ∈ Z2 of the cells such that

I each cell is contained in the chip area,
I no two cells overlap,
I no cell overlaps with any blockage,

and
∑

c∈C
((x(c)− x ′(c))2 + (y(c)− y ′(c))2) is minimum.

The problem is NP-hard.

Three-step approach:

A zone is a maximal part of a row that is completely blocked or
completely free.

Step 1: Make sure that no zone contains more cells than fit into it.
Step 2: Place the cells legally within their zones, keeping their

horizontal order.
Step 3: Postoptimzation heuristics

Step 2: legalizing within zones

→

An optimal placement of n rectangles in a row in a given order can
be found in

I O(n log n) time (for linear movement)
I O(n) time (for quadratic movement)

(Garey, Tarjan, Wilfong [1988], Brenner, Vygen [2004])

Algorithm for a single zone

Idea:

I Consider cells from left to right.
I Let c be the leftmost unplaced cell.
I Place c at the leftmost optimal position.
I If c is not placed feasibly (i.e., to the right of its predecessor),

merge it with its predecessor. The resulting cell is unplaced.
I Continue until all cells are placed.

Algorithm for a single zone

Input: n ∈ N. Convex functions f1, . . . , fn : R → R.
Widths w1, . . . ,wn > 0 and bounds xmin, xmax ∈ R with
xmax − xmin ≥ w1 + . . .+ wn.

Output: x1, . . . , xn with xmin ≤ x1, xi + wi ≤ xi+1 for
i = 1, . . . , n − 1, xn ≤ xmax, and

∑n
i=1 fi (xi) minimum.

À x0 := xmin.
W0 := 0, Wi := wi for i = 1, . . . , n.
Let L be the list consisting of 0, 1, . . . , n.
i := 1.

Algorithm for a single zone (2)

Á Let h be the predecessor of i in L.
If h = 0 or
xh + Wh ≤ min{xmax −Wi ,max{x : fi (x) minimum}}
then go to Â else go to Ã.

Â xi := max{xh+Wh,min{xmax−Wi ,min{x : fi (x) minimum}}}.
If there is a successor j of i in L
then set i := j and go to Á else go to Ä.

Ã Redefine fh by fh : x 7→ fh(x) + fi (x + Wh).
Wh := Wh + Wi .
Remove i from L.
i := h
Go to Á.

Ä For i ∈ {1, . . . , n} \ L do: xi := xh +
∑i−1

j=h wj , where h is the
maximum index smaller than i that belongs to L.

Algorithm for a single zone: result

Theorem
This algorithm finds an optimum placement. If all fi are quadratic,
the algorithm can be implemented in linear time.

(Brenner, Vygen [2004], based on
Kahng, Tucker, Zelikovsky [1999])

Algorithm for a single zone: running time

Theorem
If all fi are quadratic, the algorithm can be implemented in linear
time.

Proof.
In each iteration, i increases by one or |L| and i decrease by one.
As 1 ≤ i ≤ |L| ≤ n + 1, the total number of iterations is ≤ 2n.

For quadratic functions fi : x 7→ aix2 + bix + const, each iteration
can be done in constant time as {x : fi (x) minimum} = {−bi

2ai
} and

fh(x)+ fi (x + Wh) = (ah + ai)x2 +(bh + bi + 2aiWh)x + const.

Algorithm for a single zone: proof of optimality
Notation: ρj := max{x : fj(x) minimum}.

Proof by induction. Consider one particular iteration with list L
and index i . Let L′ := {j ∈ L : j < i}, and suppose that

(∗) min{xmax−Wj ,min{x : fj(x) minimum}} ≤ xj ≤ max{xmin, ρj}

for all j ∈ L′. Let h be the maximal element of L′.
If h = 0 or xh + Wh ≤ min{xmax −Wi , ρi}, then xi is chosen in Â

such that (∗) holds also for j = i .
Otherwise we claim that there is an optimum solution (x∗j)j∈L′∪{i}
of the subproblem defined by (fj ,Wj)j∈L′∪{i} where x∗h + Wh = x∗i .
This justifies merging h and i in Ã.
Let (x∗j)j∈L′∪{i} be such an optimum solution. If x∗i −Wh ≤ ρh,
then x∗h can be set to x∗i −Wh without increasing fh(x∗h).
So suppose that x∗i > x∗h + Wh and x∗i > ρh + Wh. Then
x∗i > max{xmin, ρh}+ Wh ≥ xh + Wh > min{xmax −Wi , ρi},
a contradiction as decreasing x∗i would reduce fi (x∗i). �

Algorithm for a single zone: proof of optimality
Notation: ρj := max{x : fj(x) minimum}.
Proof by induction. Consider one particular iteration with list L
and index i . Let L′ := {j ∈ L : j < i}, and suppose that

(∗) min{xmax−Wj ,min{x : fj(x) minimum}} ≤ xj ≤ max{xmin, ρj}

for all j ∈ L′. Let h be the maximal element of L′.

If h = 0 or xh + Wh ≤ min{xmax −Wi , ρi}, then xi is chosen in Â

such that (∗) holds also for j = i .
Otherwise we claim that there is an optimum solution (x∗j)j∈L′∪{i}
of the subproblem defined by (fj ,Wj)j∈L′∪{i} where x∗h + Wh = x∗i .
This justifies merging h and i in Ã.
Let (x∗j)j∈L′∪{i} be such an optimum solution. If x∗i −Wh ≤ ρh,
then x∗h can be set to x∗i −Wh without increasing fh(x∗h).
So suppose that x∗i > x∗h + Wh and x∗i > ρh + Wh. Then
x∗i > max{xmin, ρh}+ Wh ≥ xh + Wh > min{xmax −Wi , ρi},
a contradiction as decreasing x∗i would reduce fi (x∗i). �

Algorithm for a single zone: proof of optimality
Notation: ρj := max{x : fj(x) minimum}.
Proof by induction. Consider one particular iteration with list L
and index i . Let L′ := {j ∈ L : j < i}, and suppose that

(∗) min{xmax−Wj ,min{x : fj(x) minimum}} ≤ xj ≤ max{xmin, ρj}

for all j ∈ L′. Let h be the maximal element of L′.
If h = 0 or xh + Wh ≤ min{xmax −Wi , ρi}, then xi is chosen in Â

such that (∗) holds also for j = i .

Otherwise we claim that there is an optimum solution (x∗j)j∈L′∪{i}
of the subproblem defined by (fj ,Wj)j∈L′∪{i} where x∗h + Wh = x∗i .
This justifies merging h and i in Ã.
Let (x∗j)j∈L′∪{i} be such an optimum solution. If x∗i −Wh ≤ ρh,
then x∗h can be set to x∗i −Wh without increasing fh(x∗h).
So suppose that x∗i > x∗h + Wh and x∗i > ρh + Wh. Then
x∗i > max{xmin, ρh}+ Wh ≥ xh + Wh > min{xmax −Wi , ρi},
a contradiction as decreasing x∗i would reduce fi (x∗i). �

Algorithm for a single zone: proof of optimality
Notation: ρj := max{x : fj(x) minimum}.
Proof by induction. Consider one particular iteration with list L
and index i . Let L′ := {j ∈ L : j < i}, and suppose that

(∗) min{xmax−Wj ,min{x : fj(x) minimum}} ≤ xj ≤ max{xmin, ρj}

for all j ∈ L′. Let h be the maximal element of L′.
If h = 0 or xh + Wh ≤ min{xmax −Wi , ρi}, then xi is chosen in Â

such that (∗) holds also for j = i .
Otherwise we claim that there is an optimum solution (x∗j)j∈L′∪{i}
of the subproblem defined by (fj ,Wj)j∈L′∪{i} where x∗h + Wh = x∗i .
This justifies merging h and i in Ã.

Let (x∗j)j∈L′∪{i} be such an optimum solution. If x∗i −Wh ≤ ρh,
then x∗h can be set to x∗i −Wh without increasing fh(x∗h).
So suppose that x∗i > x∗h + Wh and x∗i > ρh + Wh. Then
x∗i > max{xmin, ρh}+ Wh ≥ xh + Wh > min{xmax −Wi , ρi},
a contradiction as decreasing x∗i would reduce fi (x∗i). �

Algorithm for a single zone: proof of optimality
Notation: ρj := max{x : fj(x) minimum}.
Proof by induction. Consider one particular iteration with list L
and index i . Let L′ := {j ∈ L : j < i}, and suppose that

(∗) min{xmax−Wj ,min{x : fj(x) minimum}} ≤ xj ≤ max{xmin, ρj}

for all j ∈ L′. Let h be the maximal element of L′.
If h = 0 or xh + Wh ≤ min{xmax −Wi , ρi}, then xi is chosen in Â

such that (∗) holds also for j = i .
Otherwise we claim that there is an optimum solution (x∗j)j∈L′∪{i}
of the subproblem defined by (fj ,Wj)j∈L′∪{i} where x∗h + Wh = x∗i .
This justifies merging h and i in Ã.
Let (x∗j)j∈L′∪{i} be such an optimum solution. If x∗i −Wh ≤ ρh,
then x∗h can be set to x∗i −Wh without increasing fh(x∗h).

So suppose that x∗i > x∗h + Wh and x∗i > ρh + Wh. Then
x∗i > max{xmin, ρh}+ Wh ≥ xh + Wh > min{xmax −Wi , ρi},
a contradiction as decreasing x∗i would reduce fi (x∗i). �

Algorithm for a single zone: proof of optimality
Notation: ρj := max{x : fj(x) minimum}.
Proof by induction. Consider one particular iteration with list L
and index i . Let L′ := {j ∈ L : j < i}, and suppose that

(∗) min{xmax−Wj ,min{x : fj(x) minimum}} ≤ xj ≤ max{xmin, ρj}

for all j ∈ L′. Let h be the maximal element of L′.
If h = 0 or xh + Wh ≤ min{xmax −Wi , ρi}, then xi is chosen in Â

such that (∗) holds also for j = i .
Otherwise we claim that there is an optimum solution (x∗j)j∈L′∪{i}
of the subproblem defined by (fj ,Wj)j∈L′∪{i} where x∗h + Wh = x∗i .
This justifies merging h and i in Ã.
Let (x∗j)j∈L′∪{i} be such an optimum solution. If x∗i −Wh ≤ ρh,
then x∗h can be set to x∗i −Wh without increasing fh(x∗h).
So suppose that x∗i > x∗h + Wh and x∗i > ρh + Wh. Then
x∗i > max{xmin, ρh}+ Wh ≥ xh + Wh > min{xmax −Wi , ρi},
a contradiction as decreasing x∗i would reduce fi (x∗i). �

Problem: zones can be very wide

Example:

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

������
������
������
������
������

������
������
������
������
������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

Even if all cells can be placed within the lower zone it is much
better to move some of them to the upper zone.

Idea: partition into columns

Subdivide zones into regions.

Example:

An area with 22 zones and 44 regions.

Which cells should be moved where?

Idea:
Formulation as a minimum cost flow problem, where

I the vertices are the regions,
I edges connect adjacent regions,
I regions with overload are sources, and
I regions with free capacity are sinks.

But this causes unnecessary movements

Example:

The left region would be a supply region although the two cells
could be placed legally with their centers in this region:

Even for a legal placement it is often impossible to assign cells to
regions such that no regions is overloaded!

Relaxing constraints

Ideas:
I Only require that at least half of a cell is placed within its

region.
I Consider sequences of regions instead of single regions.

Notation:
An interval is a sequence of consecutive regions in the same zone.

I Let {A1, . . . ,Al} be a set of regions that form a usable zone
(ordered from left to right).

I Let C i = {c i
1, . . . , c

i
ki
} be the set of cells assigned to region

Ai , ordered from left to right (for i ∈ {1, . . . , l}).
I Let w denote (total) width.

Example

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

4

Supply intervals

To compute the size of cells that have to be removed from an
interval Aµ,ν we define for 1 ≤ µ ≤ ν ≤ l :

sµ,ν := max

0,
ν∑

i=µ

(
w(C i)− w(Ai)

)
− 1

2
(
w(cµ

1) + w(cν
kν

)
) .

Using these numbers, we define recursively (for 1 ≤ µ ≤ ν ≤ l):

supp(Aµ,ν) := max

0, sµ,ν −
∑

µ≤µ′≤ν′≤ν
(µ,ν) 6=(µ′,ν′)

supp(Aµ′,ν′)

 .

Example: initial placement

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

4

Example: supply and demand regions

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

6 − 3 − 5

3 − 4 2 − 5 6 − 1
2 1

1 1

4

4 − 2 − 5 2−3−5−4

Example: supply and demand intervals

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

6 − 3 − 5

3 − 4 2 − 5 6 − 1
2 1

2
1

1

3

2

1
5

4

4 − 2 − 5 2−3−5−4

Demand intervals

To compute the size of cells that can be moved into an interval
Aµ,ν we define for 1 ≤ µ ≤ ν ≤ l :

tµ,ν := min

0,
ν∑

i=µ

(
w(C i)− w(Ai)

)
+

1
2

(
w(cµ−1

kµ−1
) + w(cν+1

1)
) .

Using these numbers, we define recursively (for 1 ≤ µ ≤ ν ≤ l):

dem(Aµ,ν) := min

0, tµ,ν −
∑

µ≤µ′≤ν′≤ν
(µ,ν) 6=(µ′,ν′)

dem(Aµ′,ν′)

 .

Theorem

I No region can be both part of a demand interval and part of a
supply interval.

I For µ < κ ≤ λ < ν with supp(Aκ,λ) > 0 we have
supp(Aµ,ν) = 0.

I For µ < κ ≤ λ < ν with dem(Aκ,λ) < 0 we have
dem(Aµ,ν) = 0.

I The number of supply and demand intervals is at most twice
the number of regions.

I They can be computed in linear time.

(Brenner, Vygen [2004])

The minimum cost flow instance
V (G) := {regions, supply intervals, demand intervals, s, t}
E (G) := {(A,A′) : A,A′ adjacent regions}

∪ {(A,A′) : A supply interval, A′ maximal proper subset of A}
∪ {(A,A′) : A′ demand interval, A maximal proper subset of A′}

I For two adjacent regions A and A′, let c(A,A′) be the
expected cost of moving a cell of width 1 from A to A′.

I All other arcs have zero cost. All arcs have infinite capacity.

We look for a minimum cost flow f with
f (δ+(v))− f (δ−(v)) ≥ supp(v) + dem(v) for all v ∈ V (G).

This can be done in O(n2 log2 n) time by standard min-cost flow
algorithms (Orlin [1993], Vygen [2002])

Example: supply and demand intervals

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

6 − 3 − 5

3 − 4 2 − 5 6 − 1
2 1

2
1

1

3

2

1
5

4

4 − 2 − 5 2−3−5−4

Example: minimum cost flow instance

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

2

1 1

3

1

2 1

2

5

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

6 − 3 − 5

3 − 4 2 − 5 6 − 1

1

1
3
2

2 1

1

2
5

4

4 − 2 − 5 2−3−5−4

Example: minimum cost flow

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

2

1 1

3

1

2 1

2

2

4

1

2
4

5

2

2

1

1

5

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

6 − 3 − 5

3 − 4 2 − 5 6 − 1

1

1
3
2

2 1

1

2
5

4

4 − 2 − 5 2−3−5−4

Realization of the flow

By realizing a flow f we mean moving cells of total size f (A,A′)
from region A to region A′ for each pair of neighbours (A,A′).

Theorem
I Let f be a solution to the minimum cost flow instance. Then a

realization of f that does not move any leftmost or rightmost
cell of a region yields a feasible assignment of the cells.

I On non-trivial instances, we cannot decrease the supply- or
increase the demand-values without losing this property.

Example: minimum cost flow

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

2

1 1

3

1

2 1

2

2

4

1

2
4

5

2

2

1

1

5

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

6 − 3 − 5

3 − 4 2 − 5 6 − 1

1

1
3
2

2 1

1

2
5

4

4 − 2 − 5 2−3−5−4

Example: realizing the flow

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

2

1 1

3

1

2 1

2

2

4

1

2
41

1

2

2 5

5

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4
2

2

2
5

5

5 5
6

63

3

3

6 − 3 − 5

3 − 4 2 − 5 6 − 1

1

1
3
2

2 1

1

2
5

4

4 − 2 − 5 2−3−5−4

Example: realizing the flow

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

2

1 1

3

1

2 1

2

2

4

1

2

5

4

2 5

1

1

2

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

14

4

2

5

5

5
6

63

3

3

522

14

4
2

2

2
5

5

5 5
6

63

3

3

4

4

Example: legal placement

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

23 4 156522

5 36534 4

14

4

2

5

5

5
6

63

3

3

522

14

4
2

2

2
5

5

5 5
6

63

3

3

4

4

Realization of the flow

Exact realization is in general impossible. We consider approximate
realizations:

Theorem
Moving cells between regions such that the total size of cells that
leave Aµ,ν minus the total size of cells that are moved into Aµ,ν is
at least

ν∑
i=µ

(
w(C i)− w(Ai)

)
− 1

2
(
w(cµ

1) + w(cν
kν

)
)

for each interval Aµ,ν leads to an assignment of the cells to the
regions for which there is a legal placement such that each cell is
placed within the region it is assigned to or within a horizontally
adjacent region.

Realization of the flow

I The arcs carrying flow form an acyclic subgraph. Consider the
vertices in topological order w.r.t. this subgraph.

I The cells to be moved are chosen according to the solution of
a Multi-Knapsack Problem (dynamic programming),
trying to maintain feasibility.

I We cannot always find cells of appropriate total size
⇒ There can still be overloads after the realization.

Overall algorithm

I Compute the min-cost flow instance.
I Find a minimum cost flow f .
I Realize f by moving cells along the flow edges.
I Repeat these steps as long as there are overloaded zones.

(If necessary, increase column width, decrease demand values.)
I Step 2: Legalize the cells within their zones.
I Step 3: Postoptimization: each step consists of a legal

sequence of moves

c0 → c1 → · · · → ck → (place of c0 or free place)

reducing total (squared) movement. Dynamic programming.

Detailed Placement: old and new approach

moving between regions moving between intervals
(old approach) (new approach)

rectangles = regions
horizontal lines = intervals
green = demand regions/intervals
red = supply regions/intervals
blue = edges with flow, width proportional to amount of flow

Lower bound: integer linear programming formulation

minimize
|C |∑

k=1

W∑
i=1

H∑
j=1

di ,j ,k · xi ,j ,k

subject to

xi ,j ,k ∈ {0, 1} ∀ i = 1, . . . ,W , j = 1, . . . ,H,
k = 1, . . . , |C |

W∑
i=1

H∑
j=1

xi ,j ,k = 1 ∀ k = 1, . . . , |C |

|C |∑
k=1

i∑
i ′=i−w(ck)+1

xi ′,j ,k ≤ 1 ∀ i = 2, . . . ,W , j = 1, . . . ,H

where di ,j ,k := (x(ck)− i)2 + (y(ck)− j)2

Lower bound: LP relaxation
Let δ > 0 be a usually sufficient radius.

minimize
|C |∑

k=1

 W∑
i=1

H∑
j=1

di ,j ,k · xi ,j ,k + δ · xδ,k


subject to

0 ≤ xi ,j ,k ≤ 1 ∀ i = 1, . . . ,W , j = 1, . . . ,H,
k = 1, . . . , |C | W∑

i=1

H∑
j=1

xi ,j ,k

+xδ,k = 1 ∀ k = 1, . . . , |C |

|C |∑
k=1

i∑
i ′=i−w(ck)+1

xi ′,j ,k ≤ 1 ∀ i = 2, . . . ,W , j = 1, . . . ,H

⇒ We can skip all variables xi ,j ,k with di ,j ,k ≥ δ.

Integrality gap

I We do not know the integrality gap of this LP.
I However, a simple example shows that it is at least 6

5 (for
δ = ∞).

Detailed placement: experimental results

weighted average of squared Euclidean distances in µm:

number of difference lower gap
objects old new (%) bound (%)
72 447 18.06 13.65 24.4 12.37 10.3
72 794 18.67 7.57 59.5 7.34 3.1

284 705 75.18 6.95 90.8 6.25 11.2
411 926 17.32 10.92 37.0 9.85 10.9

1 301 795 8.44 6.08 28.0 5.84 4.1
1 645 691 9.72 5.41 44.3 5.01 7.9
2 395 218 14.95 3.40 77.3 3.08 10.4

lower bound: LP relaxation, solved by CPLEX
HB = hard boundaries between regions (old approach)
SB = soft boundaries between regions (new approach)
maximum total runtime: 40 minutes, 8.5 GB memory

Timing experiments: legalization does not hurt
After timing optimization, before legalization After legalization with hard bounds

(a) before (b) HB (old)
After legalization with soft bounds, without postopt After legalization with soft bounds and postopt

(c) SB (new) (d) after postopt

Introduction

Placement

Routing
Problem formulation, general approach
Detailed Routing
Global Routing

VLSI routing: task
Instance:

I a number of routing planes
I a set of nets, where each net is a set of pins (terminals)
I a set of shapes for each pin, each of which is a rectangle in a

routing plane
I a set of blockage shapes
I rules that tell when two shapes are connected and when they

are separated
I timing constraints, information on power, crosstalk, yield, ...

Task:
Compute a feasible routing, i.e. a set of wire shapes for each net,
connecting the pins, and separate from blockages and shapes of
other nets

I such that all timing constraints are met
I and the (estimated) power consumption is minimized.

VLSI routing: simplified view

Find vertex-disjoint Steiner trees connecting given terminal sets in
a 3-dimensional grid graph.

Order of magnitude: 10 million Steiner trees in a graph with 100
billion vertices!

→ Even linear-time algorithms are too slow!

Global and detailed routing

VLSI routing is usually performed in three phases:

I Global routing: Eliminates congestion and timing problems on
a global level, performs global optimization, and determines
corridors for each net to reduce search space in detailed
routing

I Detailed routing: Actually constructs wires connecting each
net within the corridors obtained from global routing,
respecting all design rules necessary for the lithographic
processes in fabrication

I Postoptimization: Improve the wiring by spreading and do
some postprocessing for more robust manufacturing

Today’s designs are huge: 100,000,000,000 vertices in detailed
routing, 10,000,000 vertices in global routing. In fact even more, as
the underlying grid is an abstraction that does not work anymore.

Key features of global and detailed routing

Global routing
I contract regions of approx. 100x100 points to a single vertex
I compute capacities of edges between adjacent regions
I pack Steiner trees with respect to these edge capacities
I do global optimization
I define a detailed routing area for each net according to its

Steiner tree
Detailed routing

I route nets sequentially, mainly by shortest path algorithms
I goal-oriented shortest path algorithms
I label intervals rather than single points
I restrict path search to small areas

Detailed routing: example
00 (M1)

Detailed routing: example
01 (V1)

Detailed routing: example
02 (M2)

Detailed routing: example
03 (V2)

Detailed routing: example
04 (M3)

Detailed routing: example
05 (V3)

Detailed routing: example
06 (M4)

Detailed routing: example
07 (WT)

Detailed routing: example
08 (BA)

Detailed routing: example
09 (WA)

Detailed routing: example
10 (BB)

Key features of detailed routing

Detailed routing
I route nets sequentially, subnets by a variant of Dĳkstra’s

algorithm
I restrict each path search to a relatively small area (computed

by global routing)
I represent the routing area by a set of intervals (with constant

properties)
I label intervals rather than single points
I goal-oriented path search

Detailed routing: intervals

Goal-oriented path search / future cost / feasible potentials

Given a digraph G with arc costs c : E (G) → R+.

A function π : V (G) → R is called a feasible potential if the
reduced cost cπ(e) := c(e) + π(v)− π(w) is nonnegative for each
e = (v ,w) ∈ E (G).

Let s, t ∈ V (G). We look for a shortest s-t-path w.r.t. c.

Observation: A shortest s-t-path w.r.t. c is a shortest s-t-path
w.r.t. cπ, and vice versa.

Suppose L(x) is a lower bound on the distance from x to t, and
L(v) ≤ c(e) + L(w) for each e = (v ,w) ∈ E (G).
Then π(x) := −L(x) is a feasible potential.
L(x) is also called the future cost at x .

How to compute L

Set L(v) to the length of a shortest path from v to T in (G ′, c ′)
where G ′ is a supergraph of G and c ′(e) ≤ c(e) for all e ∈ E (G).

Choose (G ′, c ′) such that L is a good lower bound which can be
computed fast.

Future cost: example

Dĳkstra without future cost

Dĳkstra with future cost

Comparison with and without future cost

50 points labelled 24 points labelled

Comparison with and without future cost

7 intervals labelled 4 intervals labelled

Dĳkstra on intervals

I Goal-oriented Dĳkstra, labeling intervals rather than single
points

I Take the `1-distance as future cost
I Preprocessing: Voronoi diagram of targets

Theorem
This can be implemented with running time O((d + 1)l log l),
where d is the detour (actual length minus lower bound), and l is
the number of intervals in the search space.
(Hetzel [1998])

Generalizing Dĳkstra’s algorithm
Given

I a digraph G with edge lengths c : E (G) → R+

I a set T ⊆ V (G)
I sets V1,V2, . . . ,Vl ⊆ V (G) and 1 ≤ k ≤ l such that

T =
⋃k

i=1 Vi and V (G) =
⋃l

i=1 Vi .
we want to determine

d(v) := dist(G ,c)(v ,T)

for all v ∈ V (G).

We label the sets Vi instead of single vertices, by functions
di : Vi → R+ ∪ {∞} with di (u) ≥ d(u) for all u ∈ Vi .
Initially, di (u) := 0 for 1 ≤ i ≤ k and u ∈ Vi , and di (u) := ∞ for
k < i ≤ l and u ∈ Vi . Then we repeatedly apply:

Update(Vi ,Vj):
Replace dj(u) by

min{dj(u),min{di (v)+dist(G [Vi∪Vj],c)(u, v) : v ∈ Vi}}
for all u ∈ Vj .

Generalizing Dĳkstra’s algorithm
Given

I a digraph G with edge lengths c : E (G) → R+

I a set T ⊆ V (G)
I sets V1,V2, . . . ,Vl ⊆ V (G) and 1 ≤ k ≤ l such that

T =
⋃k

i=1 Vi and V (G) =
⋃l

i=1 Vi .
we want to determine

d(v) := dist(G ,c)(v ,T)

for all v ∈ V (G).
We label the sets Vi instead of single vertices, by functions
di : Vi → R+ ∪ {∞} with di (u) ≥ d(u) for all u ∈ Vi .

Initially, di (u) := 0 for 1 ≤ i ≤ k and u ∈ Vi , and di (u) := ∞ for
k < i ≤ l and u ∈ Vi . Then we repeatedly apply:

Update(Vi ,Vj):
Replace dj(u) by

min{dj(u),min{di (v)+dist(G [Vi∪Vj],c)(u, v) : v ∈ Vi}}
for all u ∈ Vj .

Generalizing Dĳkstra’s algorithm
Given

I a digraph G with edge lengths c : E (G) → R+

I a set T ⊆ V (G)
I sets V1,V2, . . . ,Vl ⊆ V (G) and 1 ≤ k ≤ l such that

T =
⋃k

i=1 Vi and V (G) =
⋃l

i=1 Vi .
we want to determine

d(v) := dist(G ,c)(v ,T)

for all v ∈ V (G).
We label the sets Vi instead of single vertices, by functions
di : Vi → R+ ∪ {∞} with di (u) ≥ d(u) for all u ∈ Vi .
Initially, di (u) := 0 for 1 ≤ i ≤ k and u ∈ Vi , and di (u) := ∞ for
k < i ≤ l and u ∈ Vi . Then we repeatedly apply:

Update(Vi ,Vj):
Replace dj(u) by

min{dj(u),min{di (v)+dist(G [Vi∪Vj],c)(u, v) : v ∈ Vi}}
for all u ∈ Vj .

Generalizing Dĳkstra’s algorithm: optimality conditions

Theorem
Suppose that we have functions d1, d2, . . . , dl with:

I di (u) = 0 for all u ∈ Vi and i = 1, . . . , k.
I di (u) ≥ d(u) for all u ∈ Vi and i = 1, . . . , l .
I For each edge e = {u, v} ∈ E (G) and each i ∈ {1, . . . , l}

with u ∈ Vi there exists a j ∈ {1, . . . , l} with v ∈ Vj and
dj(v) ≤ di (u) + c(e).

Then d(v) = min{di (v) : i = 1, . . . , l , v ∈ Vi} for all v ∈ V (G).

Proof.
Suppose that d(v) < min{dj(v) : j = 1, . . . , l , v ∈ Vj}; choose v
such that d(v) is minimum; in case of ties the shortest v -T -path
P shall have minimum number of edges. Let u be the neighbour of
v on P. By the choice of v , there exists an i ∈ {1, . . . , l} with
u ∈ Vi and di (u) + c({u, v}) = d(u) + c({u, v}) = d(v) <
min{dj(v) : j = 1, . . . , l , v ∈ Vj}. This is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalizing Dĳkstra’s algorithm: optimality conditions

Theorem
Suppose that we have functions d1, d2, . . . , dl with:

I di (u) = 0 for all u ∈ Vi and i = 1, . . . , k.
I di (u) ≥ d(u) for all u ∈ Vi and i = 1, . . . , l .
I For each edge e = {u, v} ∈ E (G) and each i ∈ {1, . . . , l}

with u ∈ Vi there exists a j ∈ {1, . . . , l} with v ∈ Vj and
dj(v) ≤ di (u) + c(e).

Then d(v) = min{di (v) : i = 1, . . . , l , v ∈ Vi} for all v ∈ V (G).

Proof.
Suppose that d(v) < min{dj(v) : j = 1, . . . , l , v ∈ Vj}; choose v
such that d(v) is minimum; in case of ties the shortest v -T -path
P shall have minimum number of edges. Let u be the neighbour of
v on P.

By the choice of v , there exists an i ∈ {1, . . . , l} with
u ∈ Vi and di (u) + c({u, v}) = d(u) + c({u, v}) = d(v) <
min{dj(v) : j = 1, . . . , l , v ∈ Vj}. This is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalizing Dĳkstra’s algorithm: optimality conditions

Theorem
Suppose that we have functions d1, d2, . . . , dl with:

I di (u) = 0 for all u ∈ Vi and i = 1, . . . , k.
I di (u) ≥ d(u) for all u ∈ Vi and i = 1, . . . , l .
I For each edge e = {u, v} ∈ E (G) and each i ∈ {1, . . . , l}

with u ∈ Vi there exists a j ∈ {1, . . . , l} with v ∈ Vj and
dj(v) ≤ di (u) + c(e).

Then d(v) = min{di (v) : i = 1, . . . , l , v ∈ Vi} for all v ∈ V (G).

Proof.
Suppose that d(v) < min{dj(v) : j = 1, . . . , l , v ∈ Vj}; choose v
such that d(v) is minimum; in case of ties the shortest v -T -path
P shall have minimum number of edges. Let u be the neighbour of
v on P. By the choice of v , there exists an i ∈ {1, . . . , l} with
u ∈ Vi and di (u) + c({u, v}) = d(u) + c({u, v}) = d(v) <
min{dj(v) : j = 1, . . . , l , v ∈ Vj}. This is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalized Dĳkstra

Set di (u) := 0 for 1 ≤ i ≤ k and u ∈ Vi .
Set di (u) := ∞ for k < i ≤ l and u ∈ Vi .
Set Q := {1, . . . , k} and key(i) := 0 for i = 1, . . . , k.
while Q 6= ∅ do:

Choose i ∈ Q with key(i) minimum. Set Q := Q \ {i}.
Project(i).

Project(i):
Choose J ⊆ {1, . . . , l} \ {i} such that

⋃
j∈{i}∪J Vj contains all

neighbours of Vi .
for j ∈ J:

Update(Vi ,Vj).
if dj(v) changes for some v ∈ Vj ,
then let key(j) be the minimum changed dj(v), v ∈ Vj ,

and set Q := Q ∪ {j}.

Generalized Dĳkstra: optimality

Theorem
This algorithm produces functions d1, d2, . . . , dl satisfying the
optimality conditions.

Proof.
The statement is obvious for the first two conditions. Therefore,
suppose, for a contradiction, that there exists an edge
e = {u, v} ∈ E (G) and an index i ∈ {1, . . . , l} such that
dj(v) > di (u) + c(e) for all j ∈ {1, . . . , l} with v ∈ Vj .
Then v 6∈ Vi . Since di (u) <∞, we have i ∈ Q at some moment.
Consider the last time that the algorithm executes Project(i).
Note that di does not change after this moment.
As v is a neighbour of u ∈ Vi , there is some j ∈ J with v ∈ Vj and
Update(Vi ,Vj) ensures

dj(v) ≤ di (u) + dist(G [Vi∪Vj],c)(u, v) ≤ di (u) + c(e).
As dj(v) never increases, this is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalized Dĳkstra: optimality

Theorem
This algorithm produces functions d1, d2, . . . , dl satisfying the
optimality conditions.

Proof.
The statement is obvious for the first two conditions. Therefore,
suppose, for a contradiction, that there exists an edge
e = {u, v} ∈ E (G) and an index i ∈ {1, . . . , l} such that
dj(v) > di (u) + c(e) for all j ∈ {1, . . . , l} with v ∈ Vj .

Then v 6∈ Vi . Since di (u) <∞, we have i ∈ Q at some moment.
Consider the last time that the algorithm executes Project(i).
Note that di does not change after this moment.
As v is a neighbour of u ∈ Vi , there is some j ∈ J with v ∈ Vj and
Update(Vi ,Vj) ensures

dj(v) ≤ di (u) + dist(G [Vi∪Vj],c)(u, v) ≤ di (u) + c(e).
As dj(v) never increases, this is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalized Dĳkstra: optimality

Theorem
This algorithm produces functions d1, d2, . . . , dl satisfying the
optimality conditions.

Proof.
The statement is obvious for the first two conditions. Therefore,
suppose, for a contradiction, that there exists an edge
e = {u, v} ∈ E (G) and an index i ∈ {1, . . . , l} such that
dj(v) > di (u) + c(e) for all j ∈ {1, . . . , l} with v ∈ Vj .
Then v 6∈ Vi . Since di (u) <∞, we have i ∈ Q at some moment.

Consider the last time that the algorithm executes Project(i).
Note that di does not change after this moment.
As v is a neighbour of u ∈ Vi , there is some j ∈ J with v ∈ Vj and
Update(Vi ,Vj) ensures

dj(v) ≤ di (u) + dist(G [Vi∪Vj],c)(u, v) ≤ di (u) + c(e).
As dj(v) never increases, this is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalized Dĳkstra: optimality

Theorem
This algorithm produces functions d1, d2, . . . , dl satisfying the
optimality conditions.

Proof.
The statement is obvious for the first two conditions. Therefore,
suppose, for a contradiction, that there exists an edge
e = {u, v} ∈ E (G) and an index i ∈ {1, . . . , l} such that
dj(v) > di (u) + c(e) for all j ∈ {1, . . . , l} with v ∈ Vj .
Then v 6∈ Vi . Since di (u) <∞, we have i ∈ Q at some moment.
Consider the last time that the algorithm executes Project(i).
Note that di does not change after this moment.

As v is a neighbour of u ∈ Vi , there is some j ∈ J with v ∈ Vj and
Update(Vi ,Vj) ensures

dj(v) ≤ di (u) + dist(G [Vi∪Vj],c)(u, v) ≤ di (u) + c(e).
As dj(v) never increases, this is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalized Dĳkstra: optimality

Theorem
This algorithm produces functions d1, d2, . . . , dl satisfying the
optimality conditions.

Proof.
The statement is obvious for the first two conditions. Therefore,
suppose, for a contradiction, that there exists an edge
e = {u, v} ∈ E (G) and an index i ∈ {1, . . . , l} such that
dj(v) > di (u) + c(e) for all j ∈ {1, . . . , l} with v ∈ Vj .
Then v 6∈ Vi . Since di (u) <∞, we have i ∈ Q at some moment.
Consider the last time that the algorithm executes Project(i).
Note that di does not change after this moment.
As v is a neighbour of u ∈ Vi , there is some j ∈ J with v ∈ Vj and
Update(Vi ,Vj) ensures

dj(v) ≤ di (u) + dist(G [Vi∪Vj],c)(u, v) ≤ di (u) + c(e).
As dj(v) never increases, this is a contradiction.

(Peyer, Rautenbach and Vygen [2006])

Generalized Dĳkstra: running time

I If we implement Q by a Fibonacci heap, the running time is is
O(n(log l + p)), where p is the time for one Project
operation and n is the number of iterations.

I Since every i ∈ {1, . . . , k} enters Q exactly once and every
i ∈ {k + 1, . . . , l} enters Q at most |Vi | times, we only have
the bound n ≤ k +

∑l
i=k+1 |Vi | in general.

I If V1, . . . ,Vl is a partition of V (G) into one-element sets,
then this is the standard algorithm with running time
O(m + n log n), where n = |V (G)| and m = |E (G)|.

I Much faster for special graphs, in particular grid graphs
I Sorting Vk+1, . . . ,Vl such that c((u, v)) > 0 for

(u, v) ∈ E (G)∩ ((Vi × (Vj \Vi))∪ ((Vi \Vj)×Vj)) and i < j
gives that each i ∈ {k + 1, . . . , l} enters Q at most once for
each key.

Modeling routing by grid graphs

Let G0 be the infinite 3-dimensional grid graph, i.e. V (G0) = Z3,
and
E (G0) = {{(x , y , z), (x ′, y ′, z ′)} : |x − x ′|+ |y − y ′|+ |z − z ′| = 1}.
We assume that for each z ∈ Z there are three constants
cz,1, cz,2, cz ∈ R such that

c({(x , y , z), (x + 1, y , z)}) = cz,1,

c({(x , y , z), (x , y + 1, z)}) = cz,2, and
c({(x , y , z), (x , y , z + 1)}) = cz

for all x , y ∈ Z, This reflects higher costs for vias and jogs and in
access planes.
We look for shortest paths w.r.t. c in induced subgraphs of G0.

Generalized Dĳkstra on grids

Let G be an induced subgraph of the infinite 3-dimensional grid.
Write V (G) as the union of rectangles V1, . . . ,Vl such that each
has O(log l) neighbours.
Assume that the number of different edge weights is constant.
Then:

I the number of iterations is O(l)
I the functions di can be stored in constant space
I an Update operation takes constant time
I the cardinality of the set J to be considered in the Project

operation is O(log l)
⇒ Running time of O(l log l)

(Peyer, Rautenbach and Vygen [2006])

Generalized Dĳkstra for accurate future costs

I Consider a supergraph G ′ of the graph G representing the
routing area, such that G ′ can be decomposed into few
rectangles (and in which distances are not much shorter).

I Apply Generalized Dĳkstra to G ′, labeling these
rectangles.

I As d(v) = dist(G ′,c)(v ,T) ≤ dist(G ,c)(v ,T), the numbers
d(v) serve as future cost for shortest path computation in G .

Example for accurate future costs

I four layers
I alternating preference directions
I we look for a path from a (green) source to a (red) target
I edge cost 1 in preference direction
I edge cost 4 in orthogonal direction
I edge cost 7 for vias

Example: local routing grid

X

Y

X

Y

pref. dir.

Example: global routing corrdidors
pref. dir.

X

Y

X

Y

Example: Hanan grid

X

pref .dir.

Y

X

Y

Example: Generalized Dĳkstra

0 22

4

0

19

8

15

26

30

15 2311

117

4

0

7

0

4

8

16

19

26

7

11

7

15

7 11

pref. dir.

X

Y

X

Y

Example: Generalized Dĳkstra

0 22

4

0

19

8

15

30

1511

117

4

0

7

4

8

7

14 14 22

11

15

22

14

18

7 11

14 18

25
21

25

29

292121

26

26

3321

19

16

7

0

18 2614

2218 30

21 25 33

25 29 37 57

64

71

78

23

pref. dir.

X

Y

X

Y

26

Example: old (`1-distance) versus new future cost

0 22

4

0

19

8

15

30

1511

117

4

0

7

4

8

7

14 14 22

11

15

22

14

18

7 11

14 18

25
21

25

29

292121

26

26

3321

19

16

7

0

18 2614

2218 30

21 25 33

25 29 37 57

64

71

78

23

pref. dir.

X

Y

X

Y

26
old: 36

new: 94

new: 63
old: 49

new: 48
old: 48

new: 77
old: 41

Example: how to compute the future cost

53 + 15 x 1 + 7,
63 + 5 x 1 + 7,

)

68 + 5 x 4,

52 + 4 x 1 + 7

63 = min (34 + 15 x 4,

37 57(52)

(63)

64(84)

(68)

30

(53)X

Y (34)

84 + 4 x 1,

Global routing: simplified problem formulation

Instance:
I a global routing (grid) graph with edge capacities
I a set of nets, each consisting of a set of vertices (terminals)

Task: find a Steiner tree for each net such that

I the edge capacities are respected,
I some objective function (e.g., netlength, yield, or power) is

optimized,
I and the timing constraints are met.

Capacity estimation
I First route very short nets (within one region or two adjacent

regions).
I Then consider each pair of adjacent regions. Assume that

planes are mainly used in preferred wiring direction,
alternatingly horizontal and vertical.

I Consider the following in-
stance of the edge-disjoint
paths problem:

Capacity estimation: fast augmenting path heuristic

I Apply a very fast multicommodity flow heuristic, exploiting
the structure of the instances. (Müller [2002])

I Each augmenting path requires only O(k) constant-time bit
pattern operations, where k is the number of edges
orthogonal to the preferred wiring direction.

I Heuristic finds a feasible integral multicommodity flow
solution whose value is approx. 90% of the (weak) max-flow
upper bound.

I Complete chip with 300 million paths in 15 minutes
(Goldberg-Tarjan runs 1 month)

Global routing is hard

Restriction: Edge-Disjoint Paths Problem
Given a pair of graphs (G ,H), find a family (Ph)h∈E(H) of
edge-disjoint paths in G such that Ph + h is a circuit for each
h ∈ E (H).
NP-complete even if

I G is a rectangle (Raghavan [1986])
I G is a rectangle, and we allow shortest paths only (Vygen

[1994])
I G is a rectangle, and G + H is Eulerian (Marx [2002])
I G is series-parallel (Nishizeki, Vygen, Zhou [2001])
I G is directed and planar, H consists of two sets of parallel

arcs (Müller [2002])

Fractional relaxation: Multicommodity Flow Problem

Instance:
I an undirected graph G with capacities u : E (G) → Z+ and

lengths l : E (G) → R
I a family N of nets (terminal pairs) with demands

w : N → Z+ and weights c : N → Z+

Task: Find a flow fN for each N of value w(N) such that∑
N∈N

wN fN(e) ≤ u(e) for e ∈ E (G),

and ∑
N∈N

cN
∑

e∈E(G)

l(e)fN(e) is minimum.

In many applications: congestion costs — heavily used edges are
more expensive
Examples: traffic flows, VLSI routing

Global routing: positive results

I There is a combinatorial fully polynomial approximation
scheme for the Multicommodity Flow Problem
(Sharokhi, Matula [1990], Leighton, Makedon, Plotkin, Stein,
Tardos, Tragoudas [1991], Plotkin, Shmoys, Tardos [1991],
Radzik [1995], Young [1995], Grigoriadis, Khachiyan [1996],
Garg, Könemann [1998], Fleischer [2000], Karakostas [2002])

I If edges have sufficient capacity, randomized rounding can be
applied to get an integral solution violating capacity
constraints only slightly (Raghavan, Thompson [1987,1991],
Raghavan [1988])

I This can be applied to Steiner trees instead of paths and works
efficiently for large global routing instances (Albrecht [2001])

But this does not take timing constraints and global objectives
(power consumption, yield) into account.

Timing constraints in routing

The delay on each path must not exceed its bound. A path can be
viewed as a sequence of nets. The delay of a net depends on its
electrical capacitance.

I first assume delay-optimal Steiner trees for all nets
I distribute slack optimally (Albrecht, Korte, Schietke, Vygen

[2000], Held [2001]) to all nets for which sufficient slack is
available. For these nets the slack defines a maximum
tolerable capacitance

I call the remaining nets (with no or insufficient slack assigned)
critical

I compute weights and a bound on the weighted sum of
capacitances for each path containing a critical net

Main design objectives in routing

minimize power consumption

I active power consumption roughly proportional to the
electrical capacitance, weighted by switching activity

I leakage power and capacitance of cells not influenced by
routing.

I capacitance of nets depends on length, width, plane, and
existence of neighbour wires

minimize cost

I minimize number of masks (number of routing planes),
maximize yield (spreading), minimize design effort

Capacitance estimation
I area capacitance (parallel plate capacitor) – proportional to

length times width
I fringing capacitance – proportional to length
I coupling capacitance – proportional to length if adjacent wire

exists

adjacent
wire

wire

silicon substrate

Modeling coupling capacitance
Assume linear dependence on distance to adjacent wire between
the following bounds:

I minimum distance → coupling capacitance 1
2v(e)

I minimum distance plus 1 → coupling capacitance 0

Example:
global routing edge e
of capacity u(e) = 8,
with two global rout-
ing solutions:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

3 1.52.5111.521 1 1.5

I Left: six unit width wires use 6–12 channels. Coupling
capacitance v(e) times 1, 1, 1

2 , 0,
1
2 , 1

I Right: two unit width wires and two double width wires use
6–10 channels. Coupling capacitance v(e) times 1, 1

2 , 0,
1
2

Example: result with and without spreading

minimizing netlength maximizing yield

Global Routing Problem

Instance:
I An undirected graph G with edge capacities u : E (G) → R+,
I a set N of nets and a set YN of feasible Steiner trees for each

net N,
I wire widths w : E (G)×N → R+,

extra space s : E (G)×N → R+,
I maximum capacitances l : E (G)×N → R+ and

coupling contributions v : E (G)×N → R+.
I A family M of subsets of N with N ∈M with capacitance

bounds U : M→ R+ and weights c(M,N) ∈ R+ for
N ∈ M ∈M.

Global Routing Problem

Task:
Find a Steiner tree YN ∈ YN and numbers 0 ≤ ye,N ≤ 1 for each
N ∈ N and e ∈ E (YN), such that∑

N∈N :e∈E(YN)

(w(e,N) + s(e,N)ye,N) ≤ u(e)

for each edge e ∈ E (G),∑
N∈M

c(M,N)
∑

e∈E(YN)

(l(e,N)− v(e,N)ye,N) ≤ U(M)

for M ∈M, and such that∑
N∈N

c(N ,N)
∑

e∈E(YN)

(l(e,N)− v(e,N)ye,N)

is minimum.

LP relaxation of the Global Routing Problem

minλ subject to∑
Y∈YN

xN,Y = 1 (N ∈ N)

∑
N∈M

c(M,N)

(∑
Y∈YN

∑
e∈E(Y)

l(e,N)xN,Y −
∑

e∈E(G)

v(e,N)ye,N

)
≤ λU(M)

(M ∈M)∑
N∈N

(∑
Y∈YN :e∈E(Y)

w(e,N)xN,Y + s(e,N)ye,N

)
≤ λu(e) (e ∈ E (G))

ye,N ≤
∑

Y∈YN :e∈E(Y)

xN,Y (e ∈ E (G),N ∈ N)

ye,N ≥ 0 (e ∈ E (G),N ∈ N)

xN,Y ≥ 0 (N ∈ N ,Y ∈ YN)

The dual LP

max
∑

N∈N
zN subject to

∑
e∈E(G)

u(e)ωe +
∑

M∈M

U(M)µM = 1

zN ≤
∑

e∈E(Y)

(
l(e,N)

∑
M∈M:N∈M

c(M,N)µM + w(e,N)ωe − χe,N

)
(N ∈ N ,Y ∈ YN)

χe,N ≥ v(e,N)
∑

M∈M:N∈M

c(M,N)µM − s(e,N)ωe (e ∈ E (G),N ∈ N)

χe,N ≥ 0 (e ∈ E (G),N ∈ N)

ωe ≥ 0 (e ∈ E (G))

µM ≥ 0 (M ∈M)

Edge costs
Let ωe ∈ R+(e ∈ E (G)) and µM ∈ R+(M ∈M), and let us
define edge costs

ψN,e := min
δ∈{0,1}

(
(l(e,N) − δv(e,N))

∑
M∈M:N∈M

c(M,N)µM

+(w(e,N) + δs(e,N))ωe

)
.

Then ∑
N∈N

min
Y∈YN

∑
e∈E(Y)

ψN,e∑
e∈E(G)

u(e)ωe +
∑

M∈M
U(M)µM

is a lower bound on the optimum LP value.

The fractional global routing algorithm

Input: An instance of the Global Routing Problem with
N = {1, . . . , k}, t ∈ N, ε ∈ R+.
Output: Feasible solutions to the primal and dual LP.

Initialize:
Set ωe := 1

u(e) for e ∈ E (G) and µM := 1
U(M) for M ∈M.

Set xi ,Y := 0 for i := 1, . . . , k, Y ∈ Yi .
Set ye,i := 0 for e ∈ E (G) and i := 1, . . . , k.
Set Yi := ∅ for i := 1, . . . , k.

(Main Loop)

TakeAverage:
Set xi ,Y := 1

t xi ,Y for i = 1, . . . , k and Y ∈ Yi .
Set ye,i := 1

t ye,i for e ∈ E (G) and i = 1, . . . , k.

The fractional global routing algorithm: main loop

For p := 1 to t do:
For i := 1 to k do:

Let ψi ,e be defined as above.
Let Yi ∈ Yi with

∑
e∈E(Yi)

ψi ,e minimum.
UpdateVariables:
Set xi ,Yi := xi ,Yi + 1.
For e ∈ E (Yi) do:

If v(e, i)
∑

M∈M:i∈M c(M, i)µM < s(e,N)ωe
then δe := 0 else δe := 1.

ye,i := ye,i + δe .

ωe := ωeeε
w(i,e)+δe s(e,i)

u(e) .
For M ∈M with i ∈ M do:

µM := µMeεc(M,i) l(e,i)−δe v(e,i)
U(M) .

Global routing algorithm: main theorem

This is a fully polynomial approximation scheme for the primal-dual
pair of LPs

Enhanced global routing algorithm

I Compute new Steiner tree for net N only if previous one is
longer than (1 + ε1)zN , where zN is a continuously updated
lower bound.

I If a new Steiner tree has to be computed, a (1 + ε2)-optimal
one suffices.

Theorem
Let λ∗ be the optimum LP value and tελ∗ > log(m + |M|). Then
the algorithm computes feasible primal and dual solutions, whose
values differ by at most a factor

ε(1 + ε)(1 + ε1)(1 + ε2)

ε(1− ε(1 + ε)(1 + ε1)(1 + ε2)λ∗)
(

1− log(m+|M|)
tελ∗

)
By choosing ε, ε1, ε2, t appropriately, we get a (1 + ε0)-optimal
solution in 2 ln(m+|M|)

ε2
0

iterations, for any ε0 > 0.

(Vygen [2004])

The fractional global routing algorithm (enhanced)

For p := 1 to t do:
For i := 1 to k do:

Let ψi ,e be defined as above.
If Yi = ∅ or

∑
e∈E(Yi)

ψi ,e > (1 + ε1)zi then:
Let Yi ∈ Yi with∑

e∈E(Yi)
ψi ,e ≤ (1 + ε2) minY∈Yi

∑
e∈E(Y) ψi ,e .

Set zi :=
∑

e∈E(Yi)
ψi ,e .

UpdateVariables
For M ∈M and j ∈ M do:

zj := zj + (1 + ε2)Ljc(M, j)
(
µnew

M − µold
M
)

Randomized rounding

Let (x , y , λ) be a fractional solution to the primal LP. Compute a
rounded solution (x̂ , ŷ , λ̂) as follows:

I choose Y ∈ YN as YN with probability xN,Y (independently
for all N ∈ N); then set x̂N,YN := 1 and x̂N,Y := 0 for
Y ∈ YN \ {YN}.

I Set ŷN,e :=
yN,eP

Y∈YN :e∈E(Y) xN,Y
if e ∈ E (YN) and ŷN,e := 0

otherwise.
I Choose λ̂ minimum possible such that (x̂ , ŷ , λ̂) is a feasible

solution to the primal LP.
Let Λ ≤ U(M)

c(M,N)
P

e∈E(Y)(l(e,N)+v(e,N)) for N ∈ M ∈M and Y ∈ YN ,

and Λ ≤ u(e)
w(e,N)+s(e,N) for N ∈ N . Moreover, suppose that

|M|+ |E (G)| < eλΛ.

Then λ̂ ≤ λ

(
1 + (e − 1)

√
ln(|M|+|E(G)|

λΛ

)
.

(Vygen [2004])

The global routing algorithm in practice

I In practice, results are much better than theoretical
performance guarantees. Usually 10–20 iterations suffice.

I Only few upper bounds are violated; these are corrected easily
by ripup-and-reroute.

I Detailed routing can realize the solution well, due to excellent
capacity estimations.

I Small integrality gap and approximate dual solution implies
that an infeasibility proof can be found for most infeasible
instances.

I First global routing algorithm to take into account coupling,
timing, and power consumption directly. Provably
near-optimal.

Example: global routing congestion map

Connection to traffic flows

The global routing problem is equivalent to routing traffic flow
I with hard capacity bounds on edges (streets)
I without capacity bounds on vertices
I in a static setting (flow continuously repeated over time)
I with bounds on weighted sums of travel times
I and with the following transit time model: the transit time

along an edge (latency) is constant up to x% congestion and
grows linearly between x% and 100% congestion

Algorithm is equivalent to selfish routing but with taxes
(exponential dependance on congestion)

Future cost in global routing

The edge costs

ψN,e := min
δ∈{0,1}

(
(l(e,N) − δv(e,N))

∑
M∈M:N∈M

c(M,N)µM

+(w(e,N) + δs(e,N))ωe

)

consist of a geometrical length part and a congestion part.

The future cost considers geometrical length only (`1-distance).

A suitable weighting of the geometrical part can speed up the
algorithm considerably.

Future cost: observations in practice

Electrical characteristics or defect sensitivities are encoded in the
geometrical part of the edge costs.

Thus future cost quality can degrade with increasing differences of
these values

I over different planes
I between a spreaded and an unspreaded wire on the same plane

and also with increasing congestion.

Example
Edge lengths for yield optimization in a recent technology:

I M5 – M7: 1.0 (1 channel extra space), 1.37 (no extra space)
I M1 – M4: 1.76 (1 channel extra space), 2.73 (no extra space)

Future cost and RC-delay

Let N be a two-terminal net, and e an edge on some path
connecting these terminals.

The contribution of e to the RC-delay on N is

re

(ce

2
+ Ce

)
,

where

I re is the resistance of the edge e,
I ce is its capacitance, and
I Ce is the downstream capacitance “hanging behind” e on the

path.

For approximating Ce , the future cost can be used.

Yield analysis: critical area

Consider faults caused by particles with size distribution

f (r) :=

{
0, r < r0
c
r3 , r ≥ r0

for some r0 ∈ R+ smaller than the smallest possible particle that
can cause a fault, and c such that

∫∞
0 f (r)dr = 1.

Then the critical area w.r.t. extra material faults on plane z is

CAz
em :=

∫
x

∫
y

∫ ∞

tem(x ,y ,z)
f (r)drdydx ,

where tem(x , y , z) is the smallest size of a particle that causes an
extra material fault at location (x , y , z).

Yield analysis: expected number of faults

Weighted sum of critical areas is used to estimate the number of
extra material faults per chip:

Fem :=
∑

z

w z
emCAz

em

Analogously define the number of miss material faults on wire
planes, Fwm, and on via planes, Fvm.

Define the estimated total number of faults per chip as
F := Fem + Fwm + Fvm.

The percentage of chips without a fault from one of the above
classes is estimated by

e−F.

The complement 1− e−F is called the wiring yield loss.

Experimental results: the testbed

Image Size # Nets
Chip Technology (in 1000 channels) (in 1000)
Edgar Cu08 40 x 40 772
Hannelore Cu08 36 x 33 140
Paul Cu08 24 x 24 68
Monika Cu11 35 x 35 1502
Ralf Cu11 26 x 26 1349
Garry Cu11 26 x 26 827
Heidi Cu11 23 x 23 777
Elena Cu11 19 x 19 421
Lotti Cu11 14 x 14 132
Dieter Cu11 19 x 19 58
Ingo Cu11 19 x 19 58
Bill Cu11 26 x 26 11
Roland Cu11 16 x 16 11
Joachim SA27E 14 x 14 288

(Müller [2006])

Experimental results: total running time (in seconds)

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.
Edgar 63421 57096 (–10.0%) 91215 (+43.8%)
Hannelore 10847 12766 (+17.7%) 14552 (+34.2%)
Paul 4076 6019 (+47.7%) 5413 (+32.8%)
Monika 65064 62560 (–3.8%) 92995 (+42.9%)
Ralf 61473 55506 (–9.7%) 116221 (+89.1%)
Garry 48382 40399 (–16.5%) 70615 (+46.0%)
Heidi 31431 25936 (–17.5%) 45150 (+43.6%)
Elena 21197 20924 (–1.3%) 38327 (+80.8%)
Lotti 3978 5425 (+36.4%) 5895 (+48.2%)
Dieter 12705 11063 (–12.9%) 11152 (–12.2%)
Ingo 20733 11125 (–46.3%) 15661 (–24.5%)
Bill 4994 3924 (–21.4%) 5448 (+9.1%)
Roland 2528 3025 (+19.7%) 4200 (+66.1%)
Joachim 7432 9024 (+21.4%) 9526 (+28.2%)
Total 358591 325343 (–9.3%) 526819 (+46.9%)

Experimental results: wirelength

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.
Edgar 211.656 m 212.022 m (+0.2%) 214.162 m (+1.2%)
Hannelore 30.110 m 30.239 m (+0.4%) 31.006 m (+3.0%)
Paul 9.888 m 9.903 m (+0.2%) 9.999 m (+1.1%)
Monika 263.936 m 264.123 m (+0.1%) 273.793 m (+3.7%)
Ralf 234.747 m 234.169 m (–0.2%) 242.094 m (+3.1%)
Garry 221.950 m 221.989 m (+0.0%) 227.186 m (+2.4%)
Heidi 150.775 m 150.863 m (+0.1%) 153.837 m (+2.0%)
Elena 92.234 m 92.226 m (–0.0%) 94.511 m (+2.5%)
Lotti 18.208 m 18.230 m (+0.1%) 18.679 m (+2.6%)
Dieter 13.226 m 13.329 m (+0.8%) 13.574 m (+2.6%)
Ingo 13.199 m 13.285 m (+0.7%) 13.482 m (+2.1%)
Bill 23.312 m 23.356 m (+0.2%) 23.542 m (+1.0%)
Roland 17.351 m 17.397 m (+0.3%) 17.595 m (+1.4%)
Joachim 62.250 m 62.432 m (+0.3%) 63.721 m (+2.4%)
Total 1363.675 m 1364.404 m (+0.1%) 1398.024 m (+2.5%)

Experimental results: number of vias

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.
Edgar 6151607 6114859 (–0.6%) 8302895 (+35.0%)
Hannelore 795855 804856 (+1.1%) 1096198 (+37.7%)
Paul 474376 449112 (–5.3%) 606733 (+27.9%)
Monika 9335637 8916882 (–4.5%) 12409600 (+32.9%)
Ralf 10314838 9250179 (–10.3%) 12945468 (+25.5%)
Garry 6018048 5740090 (–4.6%) 8555230 (+42.2%)
Heidi 5030429 4790479 (–4.8%) 6821014 (+35.6%)
Elena 2738929 2689970 (–1.8%) 3486325 (+27.3%)
Lotti 669582 649336 (–3.0%) 797861 (+19.2%)
Dieter 426860 421537 (–1.2%) 537206 (+25.9%)
Ingo 441647 429608 (–2.7%) 586823 (+32.9%)
Bill 103812 101471 (–2.3%) 185742 (+78.9%)
Roland 95847 102976 (+7.4%) 191646 (+99.9%)
Joachim 1924130 1937133 (+0.7%) 2026975 (+5.3%)
Total 44594645 42470739 (–4.8%) 58623918 (+31.5%)

Experimental results: expected number of faults per chip

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.
Edgar 0.09780 0.10493 (+7.3%) 0.08586 (–12.2%)
Hannelore 0.01396 0.01543 (+10.6%) 0.01027 (–26.4%)
Paul 0.00502 0.00568 (+13.2%) 0.00402 (–19.9%)
Monika 0.08744 0.09505 (+8.7%) 0.08055 (–7.9%)
Ralf 0.07832 0.08920 (+13.9%) 0.07361 (–6.0%)
Garry 0.07224 0.08017 (+11.0%) 0.06714 (–7.1%)
Heidi 0.05351 0.05804 (+8.5%) 0.04965 (–7.2%)
Elena 0.03167 0.03314 (+4.6%) 0.02966 (–6.3%)
Lotti 0.00658 0.00688 (+4.5%) 0.00575 (–12.6%)
Dieter 0.00482 0.00516 (+7.2%) 0.00416 (–13.6%)
Ingo 0.00457 0.00505 (+10.4%) 0.00392 (–14.2%)
Bill 0.00707 0.00833 (+17.8%) 0.00376 (–46.8%)
Roland 0.00563 0.00605 (+7.5%) 0.00396 (–29.7%)
Joachim 0.00432 0.00440 (+1.9%) 0.00431 (–0.1%)
Total 0.47336 0.51791 (+9.4%) 0.42703 (–9.8%)

The wiring yield loss is reduced by more than 10 % for most chips.

Conclusion

I VLSI design is probably the richest application area of
combinatorial optimization

I Many classical and new combinatorial optimization problems
are directly applied

I Rapidly developping technology poses constantly new
problems

I Instances sizes pose challenges to algorithm design and
implementation

I Placement and routing are studied for decades, but...
I ...there is still a lot to be done.

Better chips by better mathematics

Conclusion

I VLSI design is probably the richest application area of
combinatorial optimization

I Many classical and new combinatorial optimization problems
are directly applied

I Rapidly developping technology poses constantly new
problems

I Instances sizes pose challenges to algorithm design and
implementation

I Placement and routing are studied for decades, but...
I ...there is still a lot to be done.

Better chips by better mathematics

Thank you!

Some references for further reading
I Brenner, U. [2005]: A faster polynomial algorithm for the

unbalanced Hitchcock transportation problem. Report No. 05954,
Research Institute for Discrete Mathematics, University of Bonn

I Brenner, U., and Struzyna, M. [2005]: Faster and Better Global
Placement by a New Transportation Problem. Proceedings of the
42nd IEEE/ACM Design Automation Conference (2005), 591–596

I Brenner, U., and Vygen, J. [2001]: Worst-case ratios of networks in
the rectilinear plane. Networks 38 (2001), 126–139

I Brenner, U., and Vygen, J. [2004]: Legalizing a Placement with
Minimum Total Movement. IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems 23 (2004), 1597–1613

I Hetzel, A. [1998]: A sequential detailed router for huge grid graphs.
Design, Automation and Test in Europe, Proceedings, IEEE 1998,
332–338

I Korte, B., Rautenbach, D., and Vygen, J. [2006]: BonnTools:
Mathematical Innovation for Layout and Timing Closure of Systems
on a Chip. Report No. 06962, Research Institute for Discrete
Mathematics, University of Bonn, 2006

I Korte, B., and Vygen, J. [2006]: Combinatorial Optimization:
Theory and Algorithms. Third edition. Springer, Berlin 2006

I Müller, D.: Optimizing yield in global routing. Proceedings of the
IEEE International Conference on Computer-Aided Design (2006),
to appear

I Peyer, S., Rautenbach, D., and Vygen, J.: Generalizing Dĳkstra’s
algorithm for shortest paths in huge graphs. Manuscript 2006.

I Vygen, J. [1997]: Algorithms for large-scale flat placement.
Proceedings of the 34th IEEE/ACM Design Automation Conference
(1997), 746–751

I Vygen, J. [2002]: New theoretical results on quadratic placement.
Integration, a VLSI Journal, to appear

I Vygen, J. [2004]: Near-optimum global routing with coupling, delay
bounds, and power consumption. Proceedings of the 10th
International IPCO Conference; Springer, Berlin 2004, pp. 308–324

I Vygen, J. [2005]: Geometric quadrisection in linear time, with
application to VLSI placement. Discrete Optimization 2 (2005),
362–390

	Introduction
	Placement
	General theory
	Analytical placement
	Multisection
	Detailed Placement

	Routing
	Problem formulation, general approach
	Detailed Routing
	Global Routing

