Approximation Algorithms Summer term 2009 Prof. Dr. S. Hougardy Jan Schneider

Exercise Set 4

Exercise 1:

Show that any 4-colourable graph with n vertices can be coloured with $\mathcal{O}(n^{\frac{2}{3}})$ colours in polynomial time.

Exercise 2:

Describe an algorithm which decides if a graph G = (V, E) is 4-colourable with a running time of $\mathcal{O}(|E| \cdot 2^{|V|})$.

Exercise 3:

Show with a reduction from 3SAT that MAX-2-SAT is NP-hard.

Exercise 4:

Show that the CROSSWORD PUZZLE problem is *NP*-complete: Given an integer *n*, a subset $B \subseteq \{1, \ldots, n\}^2$ of black squares, and a finite dictionary $D \subseteq \Sigma^*$, decide if there is a mapping $F : \{1, \ldots, n\}^2 \setminus B \longrightarrow \Sigma$ such that all maximal words $(F(i, j), \ldots, F(i, j+k))$ and $(F(i, j), \ldots, F(i + k, j))$ are in *D*.

(4 points)

Please return the exercises until Tuesday, May 12th, at 2:15 pm.

(4 points)

(4 points)

(4 points)