Approximation Algorithms Summer term 2009 Prof. Dr. S. Hougardy Jan Schneider

Exercise Set 13

Exercise 1:

Let $PCP_{\epsilon}(r(n), q(n))$ be the same as PCP(r(n), q(n)) except that the constant $\frac{1}{4}$ is replaced by ϵ . Show that $NP \subseteq PCP_{n-\delta}(\log^2 n, \log n)$ for every $\delta > 0$.

(3 Points)

Exercise 2: Prove: $NP \subseteq coRP \Rightarrow NP \subseteq RP$

Exercise 3:

Let k-MAXGSAT be the following problem: Given n variables x_1, \ldots, x_n and a set of m boolean functions $\Phi = \{\Phi_1, \ldots, \Phi_m\}$ using k variables each, find a truth assignment such that the number of satisfied functions is maximized. The goal is to show that there is no polynomial 2-approximation algorithm unless P = NP.

To do so, find a k and a polynomial reduction f from SAT to k-MAXGSAT with the following property: If I is a yes-instance of SAT, then all boolean functions in f(I) are satisfiable. Otherwise, at most half of the functions in f(I) are satisfiable.

Hint: Since SAT \in NP there is a (log(n), 1)-verifier \mathcal{V} . Use \mathcal{V} to construct boolean formulas with the desired properties.

(5 Points)

Please return the exercises until Tuesday, July 21nd, at 2:15 pm.

(4 Points)