Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2010 Prof. Dr. S. Hougardy J. Schneider

Exercise Set 5

Exercise 1:

Describe exact algorithms with running times of $\mathcal{O}(2^{\frac{n}{2}})$ for the following problems:

- (i) SUBSET SUM, where n is the number of numbers.
- (ii) KNAPSACK, where n is the number of items.

(3+3 points)

Exercise 2:

An algorithm for the BIN PACKING problem is called monotone if for inputs S and T where S is a subsequence of T the algorithm needs at least as many bins for T as for S. Prove:

- (i) The Next-Fit algorithm is monotone.
- (ii) The First-Fit algorithm is not monotone.

(3+3 points)

Exercise 3:

MAXIMUM CLIQUE is the problem of finding the maximum number of vertices in a complete subgraph. Given an undirected graph G = (V, E) and some integer $k \ge 1$, we define $G^{(k)}$ to be the undirected graph $(V^{(k)}, E^{(k)})$, where $V^{(k)}$ is the set of all k-tuples of vertices from V and $\{(v_1, \ldots, v_k), (w_1, \ldots, w_k)\} \in E^{(k)}$ if and only if for each i (with $1 \le i \le k$) either $\{v_i, w_i\} \in E$ or $v_i = w_i$ holds. Prove:

- (i) If $\omega(G)$ denotes the size of a maximum clique in a graph G, then $\omega(G)^k = \omega(G^{(k)})$.
- (ii) If there is an approximation algorithm for MAXIMUM CLIQUE with a constant approximation ratio, then there is an FPTAS for the problem.

(3+3 points)

Please return the exercises until Tuesday, June 1st, at 2:15 pm.