Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2010 Prof. Dr. S. Hougardy J. Schneider

Exercise Set 12

Exercise 1:

Given an instance (K_n, c) of the TRAVELING SALESMAN PROBLEM and an edge $e \in E(K_n)$, show that it is NP-complete to decide whether e occurs in an optimal tour.

(5 points)

Exercise 2:

Why does PCP(0, poly(n)) = NP hold with $poly(n) := \bigcup_{k \ge 0} n^k$?

(3 points)

Exercise 3:

Consider the following problem: Given n variables x_1, \ldots, x_n and a set of m boolean functions $\Phi = \{\Phi_1, \ldots, \Phi_m\}$ using k variables each, find a truth assignment such that the number of satisfied functions is maximized. The goal is to show that there is no polynomial-time 2-approximation algorithm unless P = NP.

To do so, find a polynomial reduction f from SAT to the problem with the following property: If I is a yes-instance of SAT, then all boolean functions in f(I) are satisfiable. Otherwise, at most half of the functions in f(I) are satisfiable. (Hint: Use that there is a (log(n), 1)-verifier \mathcal{V} for SAT.)

(5 points)

Please return the exercises until Tuesday, July 20th, at 2:15 pm.