Scheduling

Tim Nieberg Research Institute for Discrete Mathematics

Course Information

Lecturer Jun.-Prof. Dr. T. Nieberg room: 210 e-mail: nieberg@or.uni-bonn.de Secretary D. Kijper tel.: 0228/73 8747

Information on the web:

• http://www.or.uni-bonn.de/lectures/ss10/ss10.html Some slides used with friendly permission from J.L. Hurink (Universiteit Twente). • Pinedo, Michael L:

Planning and Scheduling in Manufacturing and Services Series: Springer Series in Operations Research and Financial Engineering, second edition,2009.

Brucker, Peter:

Scheduling Algorithms 4th ed., 2004, Springer Verlag Berlin, Hardcover, ISBN: 3-540-20524-1

• Pinedo, Michael L:

Scheduling: Theory, Algorithms, and Systems 2nd ed., 2002, Prentice Hall, ISBN 0-13-028138-7

main goals of the course 'Scheduling':

- get knowledge of basic model in scheduling theory
- get knowledge on basic solution techniques for models
- learn about application of scheduling models

- decision making in manufacturing and service industries
- allocation of scare resources to tasks over time

Two main areas of application:

- manufacturing models
- service models

Remark: we only consider deterministic models

Planning of the subjects (tentative)

Lecture	Date	Subject
Lecture 1	04/13	Introduction
Lecture 2	04/20	Single machine models
Lecture 3	04/27	Single machine models
Lecture 4	05/04	Single machine models
Lecture 5	05/11	Parallel machine models
Lecture 6	05/18	Shop scheduling models
Lecture 7	06/01	Shop scheduling models
Lecture 8	06/08	Shop scheduling models
Lecture 9	06/15	Interval scheduling, Reservations
		and Timetabling
Lecture 10	06/22	Models in Transportation
Lecture 11	06/29	Models in Transportation
Lecture 12	07/06	On-Line Scheduling
Lecture 13	07/13	Wrap-Up
Lecture 14	07/20	slack

- factory producing paper bags for different goods
- raw material: rolls of paper
- 3-stage production process
 - printing the logo
 - gluing the sides of the bag
 - sewing one or both ends of the bag
- at each stage several machines for processing
- set of production orders specified by
 - quantity and type of bag
 - committed delivery date

- processing times proportional to the quantities
- late delivery leeds to a penalty, magnitude depends on
 - importance of the client
 - tardiness of the delivery
- switching on a machine from production of one bag-type to another, leads to setup time
- objectives:
 - minimize total penalty costs
 - minimize total time spent on setups

Examples: Routing and Scheduling of Airplanes

- airline has a fleet of different aircrafts
- given a set of flights characterized by
 - origin and destination
 - scheduled departure and arrival time
 - customers demand (predicted by the marketing department)
- assigning a particular type of aircraft to a specific flight leg leads to an estimated profit (based on demand)

Examples: Routing and Scheduling of Airplanes

- problem: combine different flight legs to round-trips and assign an aircraft to them
- constraints:
 - turn around time at an airport
 - law regulation on duration of a crew duty
 - . . .
- goal: maximize profit

- the scheduling function interacts with many other functions
- interactions are system-dependent
- often take place in an enterprise-wide information system; enterprise resource planning (ERP) system
- often scheduling is done interactively with a decision support system linked to the ERP system

Scheduling in Manufacturing

Scheduling in Manufacturing

Scheduling in Manufacturing

<u>Remark</u>: scheduling function in service organization is much more diverse than in manufacturing

Scheduling models (manufacturing)

- scheduling concerns optimal allocation or assignment of resources, over time, to a set of tasks or activities
 - m machines M_1, \ldots, M_m
 - $n \text{ jobs } J_1, \ldots, J_n$

• schedule may be represented by Gantt charts

Classification of Scheduling Problems

General Notations:

- *m* machines 1, . . . , *m*
- *n* jobs 1,..., *n*
- (i, j) processing of job j on machine i (called an operation)
- data for jobs:
 - *p_{ij}*: processing time of operation (*i*, *j*)
 - if a job needs to be processed only on one machine or has only one operation:
 - p_j processing time of job j
 - r_j: release date of job j (earliest starting time)
 - d_j : due date of job j (committed completion time)
 - w_j: weight of job j (importance)

(Many) Scheduling problems can be described by a three field notation $\alpha |\beta| \gamma$, where

- α describes the machine environment
- β describes the job characteristics, and
- γ describes the objective criterion to be minimized

<u>Remark</u>: A field may contain more than one entry but may also be empty.

Classification - Machine environment

- Single machine ($\alpha = 1$)
- Identical parallel machines ($\alpha = P$ or Pm)
 - *m* identical machines;

if $\alpha = P$, the value *m* is part of the input and if $\alpha = Pm$, the value is considered as a constant (complexity theory)

- each job consist of a single operation and this may be processed by any of the machines for p_j time units
- Uniform parallel machines ($\alpha = Q$ or Qm)
 - m parallel machines with different speeds s_1, \ldots, s_m

•
$$p_{ij} = p_j/s_i$$

- each job has to be processed by one of the machines
- if equal speeds: same situation as for identical machines

Classification - Machine environment

- Unrelated parallel machines ($\alpha = R$ or Rm)
 - *m* different machines in parallel
 - $p_{ij} = p_j / s_{ij}$, where s_{ij} is speed of job j on machine i
 - each job has to be processed by one of the machines

• Flow Shop (
$$lpha=$$
 F or Fm)

- *m* machines in series
- each job has to be processed on each machine
- all jobs follow the same route: first machine 1, then machine 2, etc
- if the jobs have to be processed in the same order on all machines, we have a **permutation** flow shop

Classification - Machine environment

- Flexible Flow Shop ($\alpha = FF$ or FFm)
 - a flow shop with *m* stages in series
 - at each stage a number of machines in parallel
- Job Shop ($\alpha = J$ or Jm)
 - each job has its individual predetermined route to follow
 - a job does not have to be processed on each machine
 - if a job can visit machines more than once, this is called **recirculation** or **reentrance**
- Flexible Job Shop ($\alpha = FJ$ or FJm)
 - machines replaced by work centers with parallel identical machines

- Open Shop ($\alpha = O$ or Om)
 - each job has to be processed on each machine once
 - processing times may be 0
 - no routing restrictions (this is a scheduling decision)

Classification - Job characteristics

- release dates (r_j is contained in β field)
 - if r_j is not in β field, jobs may start at any time
 - if r_j is in β field, jobs may not start processing before their release date r_j
- preemption (*pmtn* or *prmp* is contained in β field)
 - processing of a job on a machine may be interrupted and resumed at a later time even on a different machine
 - the already processed amount is not lost
- unit processing times ($p_i = 1$ or $p_{ij} = 1$ in β field)
 - each job (operation) has unit processing times
- other 'obvious' specifications (e.g. $d_j = d$)

Classification - Job characteristics

- precedence constraints (prec in β field)
 - between jobs precedence relations are given: a job may not start its processing before another job has been finished
 - may be represented by an acyclic graph (vertices = jobs, arcs = precedence relations)

• special forms of the precedences are possible: if the graph is a chain, intree or outtree, *prec* is replaced by *chain*, *intree* or *outtree*

Notations:

- C_{ij} : completion time of operation (i, j)
- C_j: completion time of job j (= completion time of last operation)

•
$$L_j = C_j - d_j$$
: lateness of job j

•
$$T_j = \max\{C_j - d_j, 0\}$$
: tardiness of job j

•
$$U_j = \begin{cases} 1 & \text{if } C_j > d_j \\ 0 & \text{otherwise} \end{cases}$$
: unit penalty

• Note: due dates implicit in β field

Classification - Objective criterion

- Makespan (γ = C_{max})
 C_{max} = max{C₁,..., C_n}
- Maximum lateness ($\gamma = L_{max}$)
 - $L_{max} = \max\{L_1, \ldots, L_n\}$
- Total completion time ($\gamma = \sum C_j$)
 - can be used to measure the Work-In-Progress (WIP)
- Total weighted completion time ($\gamma = \sum w_j C_j)$
 - represents the weighted flow times of the jobs
- Total (weighted) tardiness $(\gamma = \sum (w_j)T_j)$
- (weighted) number of tardy jobs ($\gamma = \sum (w_j)U_j$)

<u>Remark</u>: the mentioned classification gives only an overview of the basic models; lots of further extensions can be found in the literature!

- $1|r_j|C_{max}$
 - given: n jobs with processing times p_1, \ldots, p_n and release dates r_1, \ldots, r_n
 - jobs have to be scheduled without preemption on one machine taking into account the earliest starting times of the jobs, such that the makespan is minimized
 - n = 4, p = (2, 4, 2, 3), r = (5, 4, 0, 3)

- $1|r_j|C_{max}$
 - given: *n* jobs with processing times *p*₁,..., *p_n* and release dates *r*₁,..., *r_n*
 - jobs have to be scheduled without preemption on one machine taking into account the earliest starting times of the jobs, such that the makespan is minimized

•
$$n = 4, p = (2, 4, 2, 3), r = (5, 4, 0, 3)$$

Feasible Schedule with $C_{max} = 12$ (schedule is optimal)

• $F2||\sum w_j T_j$

- given *n* jobs with weights w_1, \ldots, w_n and due dates d_1, \ldots, d_n
- operations (i, j) with processing times
 p_{ii}, i = 1, 2; j = 1, ..., n
- jobs have to be scheduled on two machines such that operation (2, j) is schedules on machine 2 and does not start before operation (1, j), which is scheduled on machine 1, is finished and the total weighted tardiness is minimized

•
$$n = 3, p = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 4 & 1 \end{pmatrix}, w = (3, 1, 5), d = (6, 9, 4)$$

- $F2||\sum w_j T_j$
 - given *n* jobs with weights w_1, \ldots, w_n and due dates d_1, \ldots, d_n
 - operations (i, j) with processing times

$$p_{ij}, i = 1, 2; j = 1, \dots, n$$

• jobs have to be scheduled on two machines such that operation (2, j) is schedules on machine 2 and does not start before operation (1, j), which is scheduled on machine 1, is finished and the total weighted tardiness is minimized

•
$$n = 3$$
, $p = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 4 & 1 \end{pmatrix}$, $w = (3, 1, 5)$, $d = (6, 9, 4)$

Classes of Schedules

• Nondelay Schedules:

A feasible schedule is called a nondelay schedule if no machine is kept idle while a job/an operation is waiting for processing

Example: P3|prec|C_{max}

n = 6p = (1, 1, 2, 2, 3, 3)

Classes of Schedules

• Nondelay Schedules:

A feasible schedule is called a nondelay schedule if no machine is kept idle while a job/an operation is waiting for processing

Best nondelay:

Optimal

Remark: restricted to non preemptive schedules

• Active Schedules:

A feasible schedule is called active if it is not possible to construct another schedule by changing the order of processing on the machines and having at least one job/operation finishing earlier and no job/operation finishing later.

• Semi-Active Schedules:

A feasible schedule is called semi-active if no job/operation can be finishing earlier without changing the order of processing on any one of the machines.

Examples of (semi)-active schedules:

 $\text{Prec: } 1 \rightarrow 2; \ 2 \rightarrow 3$

Examples of (semi)-active schedules:

 $\mathsf{Prec:} \ 1 \to 2; \ 2 \to 3$

Classes of Schedules

Examples of (semi)-active schedules:

Prec: $1 \rightarrow 2$; $2 \rightarrow 3$

Classes of Schedules

Properties:

- every nonpreemptive nondelay schedule is active
- every active schedule is semiactive
- if the objective criterion is regular, the set of active schedules contains an optimal schedule (regular = non decreasing with respect to the completion times)

- determine border line between polynomially solvable and NP-hard models
- for polynomially solvable models
 - find the most efficient solution method (low complexity)
- for NP-hard models
 - develop enumerative methods (DP, branch and bound, branch and cut, ...)
 - develop heuristic approached (priority based, local search, ...)
 - consider approximation methods (with quality guarantee)