Sommersemester 2014 Prof. Dr. B. Korte Dr. U. Brenner

Kombinatorik, Graphen, Matroide 12. Übung

- 1. Es sei (E, \mathcal{F}) ein Matroid. Es seien X und Y zwei disjunkte Teilmengen von E, so daß X in (E, \mathcal{F}) unabhängig ist und Y im dualen Matroid (E, \mathcal{F}^*) unabhängig ist. Zeigen Sie, daß es dann eine Basis B von (E, \mathcal{F}) mit $X \subseteq B$ und eine Basis B^* von (E, \mathcal{F}^*) mit $Y \subseteq B^*$ gibt, so daß B und B^* disjunkt sind. Gilt diese Aussage auch noch in jedem Fall, wenn (E, \mathcal{F}) nur ein Unabhängigkeitssystem ist? (4 Punkte)
- 2. Es sei (E, \mathcal{F}) ein Matroid. Zeigen Sie, daß der BEST-IN-GREEDY jede Bottleneck-Funktion $c(F) = \min\{c(e) \mid e \in F\}$ über den Basen maximiert. (2 Punkte)
- 3. Zeigen Sie, daß Unabhängigkeitsorakel und Basis-Obermengen-Orakel für Matroide polynomiell äquivalent sind. (4 Punkte)
- 4. Es sei k eine positive ganze Zahl. Für einen Graphen G sei

$$\mathcal{F}_G = \{ F \subseteq E(G) \mid \Delta((V(G), F)) \le k \}.$$

- (a) Zeigen Sie, daß $(E(G), \mathcal{F}_G)$ immer ein Unabhängigkeitssystem ist, aber im allgemeinen kein Matroid.
- (b) Betrachten Sie das Problem, zu einem gegebenen Graphen G mit Kantengewichten $c: E(G) \to \mathbb{R}_+$ eine Menge $F \in \mathcal{F}_G$ zu finden, die $\sum_{e \in F} c(e)$ maximiert. Zeigen Sie, daß der Best-In-Greedy für dieses Optimierungsproblem eine Lösung findet, die höchstens um den Faktor 2 schlechter ist als eine optimale Lösung. (2+3 Punkte)

Abgabe: Donnerstag, den 10.7.2014, vor der Vorlesung.