Sommersemester 2016 Prof. Dr. B. Korte Dr. U. Brenner

Kombinatorik, Graphen, Matroide 1. Übung

1. Es sei y_n die Zahl der Wörter der Länge n über dem Alphabet $\{1, 2, 3\}$, die eine gerade Anzahl von Einsen und eine ungerade Anzahl von Zweien enthalten. Zeigen Sie, dass dann gilt:

(a)
$$y_n = \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2i+1} 2^{2i}$$
 für $n \in \mathbb{N}$.
(b) $y_n = 3^{n-1} - y_{n-1}$ für $n \in \mathbb{N} \setminus \{0\}$. (2+2 Punkte)

- 2. Zeigen Sie durch kombinatorische Argumente, dass für Zahlen $m, n \in \mathbb{N} \setminus \{0\}$ gilt:
 - $\binom{mn}{2} = m \binom{n}{2} + n^2 \binom{m}{2}.$
 - (b) Falls $m \leq n$, dann gilt:

$$\sum_{k=m}^{n} \binom{n}{k} \binom{k}{m} = \binom{n}{m} 2^{n-m}.$$

(2+2 Punkte)

3. Es sei $B_0 = 1$ und $B_n = \sum_{k=0}^n S_{n,k}$ für $n \in \mathbb{N} \setminus \{0\}$. Zeigen Sie:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

(4 Punkte)

- 4. Es sei $\tilde{S}_{n,k}$ die Zahl der Möglichkeiten, eine n-elementige Menge so in k Mengen aufzuteilen, dass jede Menge mindestens zwei Elemente enthält
 - (a) Berechnen Sie $\tilde{S}_{2k,k}$.
 - (b) Finden Sie eine Rekursionsformel für $\tilde{S}_{n,k}$ mit n > 2k. Beweisen Sie die Korrektheit Ihrer Formel. (2+2 Punkte)

Abgabe: Donnerstag, den 21.4.2016, vor der Vorlesung.