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a b s t r a c t

Recently, Byrka, Grandoni, Rothvoßand Sanità gave a 1.39 approximation for the Steiner tree problem,
using a hypergraph-based linear programming relaxation. They also upper-bounded its integrality gap by
1.55. We describe a shorter proof of the same integrality gap bound, by applying some of their techniques
to a randomized loss-contracting algorithm.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the Steiner tree problem, we are given an undirected graph
G = (V , E) with costs c on edges and its vertex set partitioned
into terminals (denoted R ⊆ V ) and Steiner vertices (V \ R). A
Steiner tree is a tree spanning all of R plus any subset of V \ R, and
the problem is to find a minimum-cost such tree. The Steiner tree
problem is APX-hard, thus the best we can hope for is a constant-
factor approximation algorithm.

The best known ratio is obtained by Byrka et al. [1]: their
randomized iterated rounding algorithm gives approximation
ratio ln(4) + ϵ ≈ 1.39. The prior best was a 1 + ln 3

2 + ϵ ≈ 1.55
ratio, via the deterministic loss-contracting algorithm of Robins
and Zelikovsky [6]. The algorithm of [1] differs from previous work
in that it uses a linear programming (LP) relaxation; the LP is
based on hypergraphs, and it has several different looking but
equivalent [2,5] nice formulations. A second result of [1] concerns
the LP’s integrality gap, which is defined as the worst-case ratio
(max over all instances) of the optimal Steiner tree cost to the LP’s
optimal value. Byrka et al. show that the integrality gap is at most
1.55, and their proof builds on the analysis of [6]. In this note we
give a shorter proof of the same bound using a simple LP-rounding
algorithm.
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We now describe one formulation for the hypergraphic LP.
Given a set K ⊆ R of terminals, a full component on K is a
tree whose leaf set is K and whose internal nodes are Steiner
vertices. Without loss of generality, Steiner trees have no Steiner
nodes of degree 1, and under this condition they decompose
in a unique edge-disjoint way into full components; Fig. 1(i)
and (ii) show an example. Moreover, one can show that a set
of full components on sets {K1, . . . , Kr} forms a Steiner tree if
and only if the hypergraph (V , {K1, . . . , Kr}) is a hyper-spanning
tree. Here, a hyper-spanning tree means that there is a unique
path (simple alternating vertex-hyperedge sequence of incidences)
connecting every pair of vertices. Let F(K) denote aminimum-cost
full component for terminal set K ⊆ R, and let CK be its cost. The
hypergraphic LP is as follows:

min
−
K

CK xK : (S)

∀∅ ≠ S ⊆ R :
−

K :K∩S≠∅

xK (|K ∩ S| − 1) ≤ |S| − 1−
K

xK (|K | − 1) = |R| − 1

∀K : xK ≥ 0.

The integral solutions of (S) correspond to the full component sets
of Steiner trees. As an aside, the r-restricted full component method
(e.g. [4]) allows us to assume that there are a polynomial number
of full components while affecting the optimal Steiner tree cost by
a 1 + ϵ factor. Then, it is possible to solve (S) in polynomial time
[1,8]. Here is our goal.
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Fig. 1. In (i) we show a Steiner tree; circles are terminals and squares are Steiner nodes. In (ii) we show its decomposition into full components, and their losses in bold. In
(iii) we show the full components after loss contraction.
Theorem 1 ([1]). The integrality gap of the hypergraphic LP (S) is at
most 1+ (ln 3)/2 ≈ 1.55.

2. Randomized loss-contracting algorithm

In this section we describe the algorithm. We introduce some
terminology first. The loss of full component F(K), denoted by
Loss(K), is a minimum-cost subset of F(K)’s edges that connects
the Steiner vertices to the terminals. For example, Fig. 1(ii) shows
the loss of the two full components in bold. We let loss(K)

denote the total cost of all edges in Loss(K). The loss-contracted
full component of K , denoted by LC(K), is obtained from F(K) by
contracting its loss edges (see Fig. 1(iii) for an example).

For claritywemake two observations. First, for eachK the edges
of LC(K) correspond to the edges of F(K) \ Loss(K). Second, for
terminals u, v, a uv edge may appear in LC(K1) and LC(K2) for
distinct full componentsK1 andK2; butwe think of themas distinct
parallel edges.

Our randomized rounding algorithm, RLC, is shown below. We
choose M to have value at least

∑
K xK such that t = M ln 3 is

integral. MST(·) denotes aminimum spanning tree and mst its cost.
Algorithm RLC.
1: Let T1 be a minimum spanning tree of the induced graph

G[R].
2: x← Solve (S)
3: for 1 ≤ i ≤ t do
4: Sample a full component Ki: with probability xK/M it is

the full component K , with probability 1−
∑

K xK/M it is
the empty set (we sample with replacement)

5: Ti+1 ← MST(Ti ∪ LC(Ki))
6: end for
7: Output any Steiner tree in ALG := Tt+1 ∪

t
i=1 Loss(Ki).

To prove thatALG actually contains a Steiner tree,wemust show
that all terminals are connected. To see this, note that each edge
uv of Tt+1 is either a terminal–terminal edge of G[R] in the input
instance, or else uv ∈ LC(Ki) for some i and therefore a u–v path is
created when we add in Loss(Ki).

3. Analysis

In this section we prove that the tree’s expected cost is at most
1+ ln 3

2 times the optimum value of (S). Each iteration of the main
loop of algorithm RLC first samples a full component Ki in step 4,
and subsequently recomputes a minimum-cost spanning tree in
the graph obtained by adding the loss-contracted part of Ki to Ti.
The new spanning tree Ti+1 is no more expensive than Ti; some of
its edges are replaced by newly added edges in LC(Ki). Bounding
the drop in cost will be the centerpiece of our analysis, and this
stepwill in turn be facilitated by the elegant Bridge Lemma of Byrka
et al. [1]. We describe this lemma first.

We first define the drop of a full component K with respect to a
terminal spanning tree T (it is just a different name for the bridges
of [1]). Let T/K be the graph obtained from T by identifying the
terminals spanned by K . Then let

DropT (K) := E(T ) \ E(MST(T/K)),

be the set of edges of T that are not contained in a minimum
spanning tree of T/K , and dropT (K) be its cost. We illustrate this
in Fig. 2. We state the Bridge Lemma here and present its proof for
completeness.

Lemma 1 (Bridge Lemma [1]). Given a terminal spanning tree T and
a feasible solution x to (S),−

K

xKdropT (K) ≥ c(T ). (1)

Proof. The proof needs the following theorem [3]: given a graph
H = (R, F), the extreme points of the polytope
z ∈ RF

≥0 :
−

e∈γ (S)

ze ≤ |S| − 1; ∀S ⊆ R,
−
e∈F

ze = |R| − 1


(G)

are the indicator variables of spanning trees of H , where γ (S) ⊆ F
is the set of edges with both endpoints in S. The proof strategy is
as follows. We construct a multigraph H = (R, F) with costs c , and
z ∈ RF such that the cost of z equals the left-hand side of (1); z ∈
(G), and all spanning trees of H have cost at least c(T ). Edmonds’
theorem then immediately implies the lemma. In the rest of the
proof we define H and supply the three parts of this strategy.

For each full component K with xK > 0, consider the edges in
DropT (K). Contracting all edges of E(T ) \ DropT (K), we see that
DropT (K) corresponds to edges of a spanning tree ofK . These edges
are copied (with the same cost c) into the set F , and the copies are
given weight ze = xK . Using the definition of drop, one can show
that each e ∈ F is a maximum-cost edge in the unique cycle of
T ∪ {e}.

Having now defined F , we see that−
e∈F

ceze =
−
K

xKdropT (K).

Note that we introduce |K | − 1 edges for each full component K ,
and that, for any S ⊆ R, at most |S∩K |−1 of these have both ends
in S. These two observations togetherwith the fact that x is feasible
for (S) directly imply that z is feasible for (G).

To show all spanning trees ofH have cost at least c(T ), it suffices
to show that T is an MST of T ∪ H . In turn, this follows (e.g.
[7, Theorem 50.9]) from the fact that each e ∈ F is a maximum-
cost edge in the unique cycle of T ∪ {e}. �

We also need two standard facts that we summarize in the
following lemma. They rely on the input costs satisfying the
triangle inequality (i.e. metricity), and that internal nodes of full
components have degree at least 3, both ofwhich holdwithout loss
of generality.

Lemma 2. (a) The value mst(G[R]) of the initial terminal spanning
tree computed by algorithm RLC is at most twice the optimal value
of (S).(b) For any full component K , loss(K) ≤ CK/2.
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Fig. 2. In (i) we show a terminal spanning tree T in red, and a full component spanning terminal subset K = {a, b, c, d} in black; thick edges are its loss. In (ii) we show
T/K , and DropT (K) is shown as dashed edges. In (iii) we show MST(T ∪ LC(K)). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Proof. For (a) we use a shortcutting argument along with Ed-
monds’ polytope (G) for the graph H = G[R]. In detail, let x be an
optimal solution to (S). For eachK , shortcut a tour ofF(K) to obtain
a spanning tree of K with c-cost at most twice CK (by the triangle
inequality) and add these edges to F with z-value xK . Like before,
since x is feasible for (S), z is feasible for (G), and so there is a span-
ning tree of G[R]whose c-cost is at most

∑
e∈F ceze ≤ 2

∑
K CK xK .

The result (b) is standard (e.g. [4, Lemma 4.1]) but we give a
sketch. In the full component, take a Steiner node x with at most
one Steiner neighbour. Thus x has≥2 terminal neighbours. Include
the cheapest edge from x to a terminal neighbour in the loss; then
treat x as a terminal and iterate from the beginning. We end when
there are no Steiner nodes, at which point we have spent at most
half of CK to construct the loss. �

We are ready to prove the main theorem.

Proof of Theorem 1. Let x be an optimal solution to (S) computed
in step 2, define lp∗ to be its objective value, and

loss∗ =
−
K

xKloss(K)

its fractional loss. Our goal will be to derive upper bounds on
the expected cost of tree Ti maintained by the algorithm at the
beginning of iteration i. After selecting Ki, one possible candidate
spanning tree of Ti∪LC(Ki) is given by the edges of Ti\DropTi(Ki)∪
LC(Ki), and thus

c(Ti+1) ≤ c(Ti)− dropTi(Ki)+ c(LC(Ki)). (2)

Let us bound the expected value of Ti+1, given any fixed Ti. Due
to the distribution from which Ki is drawn, and using (2) with
linearity of expectation, conditioning on any Ti we have

E[c(Ti+1)|Ti] ≤ c(Ti)−
1
M

−
K

xKdropTi(K)

+
1
M

−
K

xK (CK − loss(K)).

Applying the bridge lemma on the terminal spanning tree Ti, and
using the definitions of lp∗ and loss∗, we have

E[c(Ti+1)|Ti] ≤

1−

1
M


c(Ti)+ (lp∗ − loss∗)/M.

We can now remove the conditioning and use induction to get

E[c(Tt+1)]

≤


1−

1
M

t

c(T1)+ (lp∗ − loss∗)

1−


1−

1
M

t
≤ lp∗


1+


1−

1
M

t
− loss∗


1−


1−

1
M

t
,

where the second inequality comes from Lemma 2(a). The cost of
the final Steiner tree is at most c(ALG) ≤ c(Tt+1)+

∑t
i=1 loss(Ki).

Moreover,

E[c(ALG)] = E[c(Tt+1)] + t · loss∗/M

≤ lp∗

1+


1−

1
M

t
+ loss∗


1−

1
M

t

+
t
M
− 1


≤ lp∗


1
2
+

3
2


1−

1
M

t

+
t

2M


≤ lp∗ (1/2+ 3/2 · exp(−t/M)+ t/2M) .

Here the second inequality uses loss∗ ≤ lp∗/2, a weighted
average of Lemma 2(b), as well as (1 − 1

M )t ≥ 1 − t/M; the third
inequality uses (1− 1

M )t ≤ exp(−t/M). The last line explains our
choice of t = M ln 3 since λ = ln 3 minimizes 1

2 +
3
2e
−λ
+

λ
2 , with

value 1+ ln 3
2 . Thus the algorithm outputs a Steiner tree of expected

cost at most (1+ ln 3
2 )lp∗, which implies the claimed upper bound

of 1+ ln 3
2 on the integrality gap.

We now discuss a variant of the result just proven. A Steiner
tree instance is quasi-bipartite if there are no Steiner–Steiner edges.
For quasi-bipartite instances, Robins and Zelikovsky tightened the
analysis of their algorithm to show that it has approximation ratio
α, where α ≈ 1.28 satisfies α = 1 + exp(−α)). Here, we will
show an integrality gap bound of α (the longer proof of [1] via
the Robins–Zelikovsky algorithm can be similarly adapted). We
can refine Lemma 2(a) (like in [6]) to show that in quasi-bipartite
instances, mst(G[R]) ≤ 2(lp∗ − loss∗), which inserted into the
previous argument gives

E[c(ALG)] ≤


1−

1
M

t

· 2(lp∗ − loss∗)

+ (lp∗ − loss∗)

1−


1−

1
M

t
+ loss∗ · t/M

≤ exp(−t/M)(lp∗ − loss∗)+ lp∗ + (t/M − 1)loss∗

= lp∗(1+ exp(−t/M))+ loss∗(t/M − 1− exp(−t/M))

and setting t = αM gives E[c(ALG)] ≤ α · lp∗, as needed. We
note that in quasi-bipartite instances the hypergraphic relaxation
is equivalent [2] to the so-called bidirected cut relaxation thus we
get an α integrality gap bound there as well.

We close with two suggestions for future work. First, 1 + ln 3
2

arose in the analysis of two very different algorithms (RLC and
Robins–Zelikovsky); a simple explanation for this fact would be
very interesting. Second, the RLC algorithm works for any large



570 D. Chakrabarty et al. / Operations Research Letters 38 (2010) 567–570
enough value of M and in the limit as M → ∞, it can be seen
that RLC is equivalent to the algorithm which picks each full
component K independently with probability 1 − 3−xK . The key to
see this equivalence is that for any collectionL of full components,
RLC picks a set of full components disjoint fromLwith probability
limM→∞(1 −

∑
K∈L xK/M)M ln 3

= 3−
∑

K∈L xK , the same as the
independent sampling algorithm. It would be nice to analyze this
version of the algorithm directly.
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