Exercise Set 6

Exercise 6.1. Prove that the STANDARD PLACEMENT PROBLEM can be solved optimally in

$$O\left(\left((n+s)!\right)^2(m+n^2+k\log k)(n+k)\log(n+k)\right)$$

time, where $n := |\mathcal{C}|, k := |\mathcal{N}|, m := |\mathcal{P}|$ and $s := |\mathcal{S}|$.

(5 points)

Exercise 6.2. Given a chip area A and a set C of circuits. A movebound for $C \in C$ is a subset $A_C \subseteq A$ in which C must be placed entirely. Assume that the height and width of every circuit is 1 and that A and each movebound A_C ($C \in C$) are axis-parallel rectangles with integral coordinates.

Describe an algorithm with running time polynomial in $|\mathcal{C}|$ that decides whether there is a feasible placement meeting all movebound constraints.

(5 points)

Exercise 6.3. Consider the STANDARD PLACEMENT PROBLEM on instances without blockages, where $h(C) \equiv 1 \equiv w(C)$ (unit size for $C \in C$) as well as $w(N) \equiv 1$ (unit net weights for $N \in \mathcal{N}$).

Prove or disprove that this problem is NP-hard.

(5 points)

Exercise 6.4. Let N be a finite set of pins, and let S_p be a set of axis-parallel rectangles for each $p \in N$. We want to compute the *bounding box netlength* of N, i.e. an axis-parallel rectangle R with minimum perimeter s.t. for every $p \in N$ there is an $S \in S_p$ with $R \cap S \neq \emptyset$.

Show how to compute such a rectangle in $O(n^3)$ time where $n := \sum_{p \in N} |S_p|$. (5 points)

Deadline: June 13^{th} , before the lecture. The websites for lecture and exercises can be found at

http://www.or.uni-bonn.de/lectures/ss17/chipss17.html

In case of any questions feel free to contact me at ochsendorf@or.uni-bonn.de.