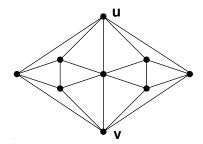
Sommersemester 2017 Prof. Dr. B. Korte Dr. U. Brenner

Kombinatorik, Graphen, Matroide 8. Übung

- 1. Zeigen Sie, dass es in jedem Graphen G einen Weg mit mindestens $\chi(G)-1$ Kanten geben muss. (3 Punkte)
- 2. Sei G ein Graph mit n Knoten. Zeigen Sie, dass $\chi(G) + \chi(\bar{G}) \leq n + 1$ gilt. Dabei ist \bar{G} der Komplementgraph von G, also der Graph mit derselben Knotenmenge wie G, in dem zwei Knoten genau dann durch eine Kante verbunden sind, wenn sie es in G nicht sind. (3 Punkte)
- 3. Betrachten Sie den folgenden Graph:



- (a) Geben Sie Farblisten für die Knoten an, die für u und v aus je einem Element und für alle anderen Knoten aus je vier Elementen bestehen, so dass es für diese Listen keine zulässige Listenfärbung gibt.
- (b) Folgern Sie aus (a), dass es planare Graphen gibt, deren listenchromatische Zahl größer als vier ist. (3+2 Punkte)
- 4. Betrachten Sie sich den folgenden falschen Beweis des Vierfarbensatzes:

Wir beweisen per Induktion in der Knotenzahl, dass für jeden planaren Graphen G gilt: $\chi(G) \leq 4$. Der Induktionsanfang |V(G)| = 1 ist trivial, sei also |V(G)| > 1, und wir betrachten eine feste planare Einbettung von G. Es sei x ein Knoten von G mit minimalem Grad. Aus der Vorlesung wissen wir, dass $|\delta_G(x)| \leq 5$ gilt. Die Induktionsvoraussetzung liefert eine zulässige Knotenfärbung $f:V(G)\setminus\{x\}\to\{1,2,3,4\}$ von G-x. Wenn es eine Farbe aus $\{1,2,3,4\}$ gibt, die von f bei den Nachbarn von x nicht verwendet wird, können wir x mit einer solchen Farbe färben und haben so eine zulässige 4-Färbung von G. Also nehmen wir an, dass alle vier Farben bei den Nachbarn von x vorkommen. Insbesondere gilt also $|\delta_G(x)| \in \{4,5\}$. Wie im Beweis des Fünffarbensatzes aus der Vorlesung seien die Nachbarn von x in Bezug auf die Einbettung zyklisch durchnumeriert (siehe Abbildung 1 (a) für den Fall $|\delta_G(x)| = 5$). Ebenso betrachten wir wie in der Vorlesung für $i,j\in\{1,2,3,4\}$ den Graphen $H_{i,j}=G[\{v\in V(G)\setminus\{x\}:f(v)\in\{i,j\}]$. Sei zunächst $|\delta_G(x)|=4$. Der Fall funktioniert analog zur Vorlesung: O.B.d.A. gelte $f(v_i)=i$ für $i\in\{1,2,3,4\}$. Wenn es in $H_{1,3}$ keinen v_1 - v_3 -Weg gibt, können wir in der Zusammenhangskom-

ponente von v_1 in $H_{1,3}$ die Farben 1 und 3 vertauschen. Anschließend ist die Farbe 1 für x übrig,

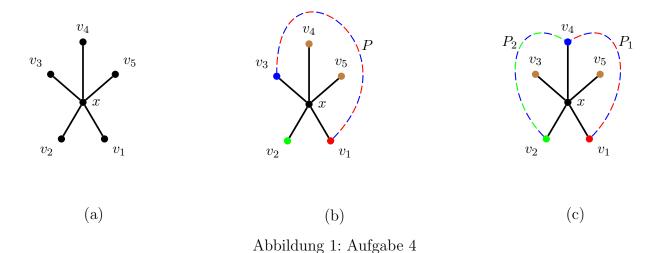
und wir sind fertig. Wenn es aber einen v_1 - v_3 -Weg P in $H_{1,3}$ gibt, dann bildet P zusammen mit den Kanten $\{x, v_1\}$ und $\{x, v_3\}$ einen Kreis, der v_2 und v_4 trennt. Also gibt es in $H_{2,4}$ keinen v_2 - v_4 -Weg, weshalb wir in der Zusammenhangskomponente von v_2 in $H_{2,4}$ die Farben 2 und 4 vertauschen, wodurch wir die Farbe 2 für x übrig haben und wieder fertig sind.

Sei also $|\delta_G(x)| = 5$. Genau zwei der Nachbarn von x erhalten also unter f dieselbe Farbe. Diese können in der zyklischen Ordnung nebeneinander liegen oder nicht.

Wenn sie nebeneinander liegen, können wir o.B.d.A. $f(v_4) = f(v_5)$ annehmen. Es sei wieder $f(v_i) = i$ für $i \in \{1, 2, 3, 4\}$. Wie im Fall $|\delta_G(x)| = 4$ können wir annehmen, dass es in $H_{1,3}$ einen v_1 - v_3 -Weg P gibt (siehe Abbildung 1 (b)). Dann gibt es in $H_{2,4}$ aber weder einen v_2 - v_4 -Weg noch einen v_2 - v_5 -Weg. Also können wir in der Zusammenhangskomponente von v_2 in $H_{2,4}$ die Farben 2 und 4 vertauschen, wodurch wieder die Farbe 2 für x frei wird, und wieder sind wir fertig.

Es bleibt der Fall, dass die gleich-gefärbten Nachbarn von x in der zyklischen Ordnung nicht nebeneinander liegen. O.B.d.A. gelte $f(v_3) = f(v_5)$. Wieder gelte $f(v_i) = i$ für $i \in \{1, 2, 3, 4\}$ (also $f(v_5) = 3$). Es muss in $H_{1,4}$ einen v_1 - v_4 -Weg P_1 geben, sonst könnten wir wieder die Farbe 1 für x frei machen. Ebenso muss es in $H_{2,4}$ einen v_2 - v_4 -Weg P_2 geben (siehe Abbildung 1 (c)). Der Weg P_1 sorgt aber dafür, dass es in $H_{2,3}$ keinen v_2 - v_5 -Weg gibt, daher können wir in der Zusammenhangskomponente von v_5 in $H_{2,3}$ die Farben 2 und 3 vertauschen, wonach v_5 nicht mehr mit der Farbe 3, sondern mit der Farbe 2 gefärbt ist. Der Weg P_2 bewirkt, dass es in $H_{1,3}$ keinen v_1 - v_3 -Weg gibt, daher können wir in der Zusammenhangskomponente von v_3 in $H_{1,3}$ die Farben 1 und 3 vertauschen, wonach v_3 nicht mehr die Farbe 3, sondern die Farbe 1 hat. Die Farbe 3 kommt dann an den Nachbarn von x nicht mehr vor, wodurch wir wieder eine Farbe für x gewonnen haben.

Wo ist der Fehler im Beweis? (5 Punkte)



Homepage der Übung:

http://www.or.uni-bonn.de/lectures/ss17/kgm_uebung_ss17.html

Abgabe: Donnerstag, 22.6.2017, vor der Vorlesung.