Exercise Set 2

Exercise 2.1. A Boolean function $f \in B_n$ depends essentially on all its variables if for every $1 \le i \le n$ the subfunctions $f|_{x_i=0}$ and $f|_{x_i=1}$ are different.

Let $f \in B_n$ be a function that essentially depends on all its variables. Show:

- (a) $S_{B_2}(f) \ge n-1$,
- (b) $D_{B_2}(f) \ge \lceil \log_2 n \rceil$.

(5 points)

Exercise 2.2. Define a class of functions $(f_n)_{n \in \mathbb{N}}$ such that $f_n \in B_n$ and their SOP representations have size $\Omega(2^n)$.

(5 points)

Exercise 2.3. Let $f \in B_n$ be a Boolean function given as an oracle (i.e. for each $x \in \{0,1\}^n$ the value f(x) can be computed in $\mathcal{O}(1)$ time). Show that the set PI(f) of all prime implicants can be computed in $\mathcal{O}(n^23^n)$ time. (5 points)

Exercise 2.4. Show that the multiplication of two *n*-bit numbers can be implemented with a Boolean circuit over B_2 of size $\mathcal{O}(n^2)$, depth $\mathcal{O}(\log^2 n)$ and maximum fanout 2.

(5 points)

Deadline: April 26th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss18/chipss18.html

In case of any questions feel free to contact me at bihler@or.uni-bonn.de.