Exercise Set 4

Exercise 4.1. For a finite set $\emptyset \neq T \subsetneq \mathbb{R}^2$ we define

$$BB(T) := \max_{(x,y)\in T} x - \min_{(x,y)\in T} x + \max_{(x,y)\in T} y - \min_{(x,y)\in T} y.$$

A Steiner tree for T is a tree Y with $T \subseteq V(Y) \subsetneq \mathbb{R}^2$. We denote by Steiner(T) the length of a shortest rectilinear (i.e. edge lengths acc. to ℓ_1) Steiner tree for T. Moreover let MST(T) be the length of a minimum spanning tree in the complete graph on T with edge costs ℓ_1 .

Prove that:

- (a) $BB(T) \leq Steiner(T) \leq MST(T);$
- (b) Steiner $(T) \leq \frac{3}{2} BB(T)$ for $|T| \leq 5$;

(c) There is no $\alpha \in \mathbb{R}$ s.t. Steiner $(T) \leq \alpha BB(T)$ for all finite $\emptyset \neq T \subset \mathbb{R}^2$.

(2 + 3 + 2 points)

Exercise 4.2. Let T be an instance of the Rectilinear Steiner Tree Problem and $r \in T$. For a rectilinear Steiner tree Y we denote by f(Y) the maximum length of a path from r to any element of $T \setminus \{r\}$ in Y.

- (a) Find an instance where no Steiner tree minimizes both length and f.
- (b) Consider the problem of finding a shortest Steiner tree Y minimizing f(Y) among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid?

(1 + 4 points)

Exercise 4.3. Consider the following algorithm to compute a rectilinear Steiner tree T for a set P of points in the plane \mathbb{R}^2 .

In this notation $SP(u, w) \subset \mathbb{R}^2$ is the area covered by shortest paths between u and w, and dist(s, T) is the minimum distance between s and the shortest path area SP(u, w) of an edge $\{u, w\} \in E(T)$.

1: Choose $p \in P$ arbitrarily; 2: $T := (\{p\}, \emptyset), S := P \setminus \{p\}$ 3: while $S \neq \emptyset$ do 4: Choose $s \in S$ with minimum dist(s, T)5: Let $\{u, w\} \in E(T)$ be an edge which minimizes dist(s, SP(u, w))6: $v := \arg\min\{dist(s, v) \mid v \in SP(u, w)\}$ 7: $T := (V(T) \cup \{v\} \cup \{s\}, E(T) \setminus (u, w) \cup \{u, v\} \cup \{v, w\} \cup \{v, s\}\}$ 8: $S := S \setminus \{s\}$ 9: end while

Show that the algorithm is a $\frac{3}{2}$ -approximation algorithm for the MINIMUM STEINER TREE PROBLEM.

Hint: First show that the length of T is at most the length of a minimum spanning tree on P.

(8 points)

Deadline: Tuesday, May 15th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss18/chipss18.html

In case of any questions feel free to contact me at bihler@or.uni-bonn.de.