Exercise Set 4

Exercise 4.1. For a finite set $\emptyset \neq T \subsetneq \mathbb{R}^{2}$ we define

$$
\mathrm{BB}(T):=\max _{(x, y) \in T} x-\min _{(x, y) \in T} x+\max _{(x, y) \in T} y-\min _{(x, y) \in T} y .
$$

A Steiner tree for T is a tree Y with $T \subseteq V(Y) \subsetneq \mathbb{R}^{2}$. We denote by $\operatorname{Steiner}(T)$ the length of a shortest rectilinear (i.e. edge lengths acc. to ℓ_{1}) Steiner tree for T. Moreover let $\operatorname{MST}(T)$ be the length of a minimum spanning tree in the complete graph on T with edge costs ℓ_{1}.

Prove that:
(a) $\mathrm{BB}(T) \leq \operatorname{Steiner}(T) \leq \operatorname{MST}(T)$;
(b) $\operatorname{Steiner}(T) \leq \frac{3}{2} \mathrm{BB}(T)$ for $|T| \leq 5$;
(c) There is no $\alpha \in \mathbb{R}$ s.t. $\operatorname{Steiner}(T) \leq \alpha \mathrm{BB}(T)$ for all finite $\emptyset \neq T \subset \mathbb{R}^{2}$.

$$
(2+3+2 \text { points })
$$

Exercise 4.2. Let T be an instance of the Rectilinear Steiner Tree Problem and $r \in T$. For a rectilinear Steiner tree Y we denote by $f(Y)$ the maximum length of a path from r to any element of $T \backslash\{r\}$ in Y.
(a) Find an instance where no Steiner tree minimizes both length and f.
(b) Consider the problem of finding a shortest Steiner tree Y minimizing $f(Y)$ among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid?
(1+4 points)

Exercise 4.3. Consider the following algorithm to compute a rectilinear Steiner tree T for a set P of points in the plane \mathbb{R}^{2}.

In this notation $S P(u, w) \subset \mathbb{R}^{2}$ is the area covered by shortest paths between u and w, and $\operatorname{dist}(s, T)$ is the minimum distance between s and the shortest path area $S P(u, w)$ of an edge $\{u, w\} \in E(T)$.

```
Choose \(p \in P\) arbitrarily;
\(T:=(\{p\}, \emptyset), S:=P \backslash\{p\}\)
while \(S \neq \emptyset\) do
        Choose \(s \in S\) with minimum \(\operatorname{dist}(s, T)\)
    Let \(\{u, w\} \in E(T)\) be an edge which minimizes \(\operatorname{dist}(s, S P(u, w))\)
    \(v:=\arg \min \{\operatorname{dist}(s, v) \mid v \in S P(u, w)\}\)
    \(T:=(V(T) \cup\{v\} \cup\{s\}, E(T) \backslash(u, w) \cup\{u, v\} \cup\{v, w\} \cup\{v, s\}\}\)
    \(S:=S \backslash\{s\}\)
    end while
```

Show that the algorithm is a $\frac{3}{2}$-approximation algorithm for the Minimum Steiner Tree Problem.

Hint: First show that the length of T is at most the length of a minimum spanning tree on P.
(8 points)

Deadline: Tuesday, May $15^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss18/chipss18.html
In case of any questions feel free to contact me at bihler@or.uni-bonn.de.

