Exercise Set 6

Exercise 6.1. Consider the spreading $L P$ for $d=2$:

$$
\begin{array}{rlr}
\text { min } & \sum_{e \in E(G)} w(e) l(e) & \\
\text { s.t. } & \sum_{y \in X} l(\{x, y\}) & \geq \frac{1}{4}(|X|-1)^{3 / 2} \\
l(\{x, y\})+l(\{y, z\}) & \geq l(\{x, z\}) & x \in X \subseteq V(G) \\
& l(\{x, y\}) & \geq 1 \\
l(\{x, x\}) & =0 & x, y, z \in V(G) \\
& & x \in V(G), x \neq y \\
& x \in V(G)
\end{array}
$$

Show that the optimum of the spreading LP is a lower bound for the cost of any 2 -dimensional arrangement.

Exercise 6.2. Given a chip area A and a set \mathcal{C} of circuits. A movebound for $C \in \mathcal{C}$ is a subset $A_{C} \subseteq A$ in which C must be placed entirely. Assume that the height and width of every circuit is 1 and that A and each movebound $A_{C}(C \in \mathcal{C})$ are axis-parallel rectangles with integral coordinates.
Describe an algorithm with running time polynomial in $|\mathcal{C}|$ that decides whether there is a feasible placement meeting all movebound constraints.

Exercise 6.3. Consider the Standard Placement Problem on instances without blockages, where $h(C) \equiv 1 \equiv w(C)$ (unit size for $C \in \mathcal{C}$) as well as $w(N) \equiv 1$ (unit net weights for $N \in \mathcal{N}$).

Prove or disprove that this problem is NP-hard.

Exercise 6.4. Let N be a finite set of pins, and let S_{p} be a set of axis-parallel rectangles for each $p \in N$. We want to compute the bounding box netlength of N, i.e. an axis-parallel rectangle R with minimum perimeter s.t. for every $p \in N$ there is an $S \in S_{p}$ with $R \cap S \neq \emptyset$.

Show how to compute such a rectangle in $O\left(n^{3}\right)$ time where $n:=\sum_{p \in N}\left|S_{p}\right|$.
(5 points)

Deadline: June $5^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss18/chipss18.html
```

In case of any questions feel free to contact me at bihler@or.uni-bonn.de.

