Exercise Set 9

Exercise 9.1. Let (G, H) be a pair of undirected graphs on $V(G)=V(H)$ with capacities $u: E(G) \rightarrow \mathbb{R}_{+}$and demands $b: E(H) \rightarrow \mathbb{R}_{+}$. A concurrent flow of value $\alpha>0$ is a family $\left(x^{f}\right)_{f \in E(H)}$ where x^{f} is an s - t-flow of value $\alpha \cdot b(f)$ in $(V(G),\{(v, w),(w, v) \mid\{v, w\} \in E(G)\})$ for each $f=\{t, s\} \in$ $E(H)$, and

$$
\sum_{f \in E(H)} x^{f}((v, w))+x^{f}((w, v)) \leq u(e)
$$

for all $e=\{v, w\} \in E(G)$. The Maximum Concurrent Flow Problem is to find a concurrent flow with maximum value $\alpha>0$.

Prove that the Maximum Concurrent Flow Problem is a special case of the Min-Max Resource Sharing Problem. Specify how to implement block solvers.

Exercise 9.2. Consider the Escape Routing Problem: We are given a complete 2-dimensional grid graph $G=(V, E)$ (i.e. $V=\{0, \ldots, k-1\} \times$ $\{0, \ldots, k-1\}$ and $E=\{\{v, w\} \mid v, w \in V,\|v-w\|=1\})$ and a set $P=$ $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq V$. The task is to compute vertex-disjoint paths $\left\{q_{1}, \ldots, q_{m}\right\}$ s.t. each q_{i} connects p_{i} with a point on the border $B=\{(x, y) \in V \mid\{x, y\} \cap$ $\{0, k-1\} \neq \emptyset\}$.

Find a polynomial-time algorithm for the Escape Routing Problem or prove that the problem is NP-hard.
(4 points)
Exercise 9.3. Show that the Vertex-Disjoint Paths Problem is NPcomplete even if G is a subgraph of a track graph G_{T} with two routing planes. Recall that in this case G_{T} is a graph $G_{T}=(V, E)$ for some $n_{x}, n_{y} \in \mathbb{N}$ with $V=\left\{1, \ldots, n_{x}\right\} \times\left\{1, \ldots, n_{y}\right\} \times\{1,2\}$ and $E=\left\{\left\{(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}\right.$: $\left.\left|x-x^{\prime}\right| z+\left|y-y^{\prime}\right|(3-z)+\left|z-z^{\prime}\right|=1\right\}$.

Hint: Consider the proof of Theorem 5.2.

Exercise 9.4. Given an instance of the Min-Max Resource Sharing Problem with σ-optimal block solvers for some fixed $\sigma \geq 1$.
(a) Show that t phases of the Resource Sharing Algorithm call the oracle at most

$$
\min \left\{t \Lambda, t|\mathcal{N}|+\frac{\left|\mathcal{R}^{\prime}\right|}{\varepsilon} \ln \left(\mathbb{1}^{\top} y^{(t)}\right)\right\}
$$

times where $\Lambda:=\sum_{N \in \mathcal{N}} \max \left\{1, \sup \left\{b_{r} \mid r \in \mathcal{R}, b \in \mathcal{B}_{N}\right\}\right\}$ and $\mathcal{R}^{\prime}:=$ $\left\{r \in \mathcal{R} \mid \exists N \in \mathcal{N}, b \in \mathcal{B}_{N}\right.$ with $\left.b_{r}>1\right\}$.
(b) Prove that a $\sigma(1+\omega)$-approximate solution can be computed in
$O\left(\theta \log |\mathcal{R}|\left((|\mathcal{N}|+|\mathcal{R}|) \log \log |\mathcal{R}|+\sigma \omega^{-2} \min \{\rho|\mathcal{N}|,|\mathcal{N}|+|\overline{\mathcal{R}}| \sigma\}\right)\right)$
time where $\rho:=\max \left\{1, \sup \left\{b_{r} / \lambda^{*} \mid r \in \mathcal{R}, N \in \mathcal{N}, b \in \mathcal{B}_{N}\right\}\right\}$ and $\overline{\mathcal{R}}:=\left\{r \in \mathcal{R} \mid \exists N \in \mathcal{N}, b \in \mathcal{B}_{N}\right.$ with $\left.b_{r}>\lambda^{*}\right\}$.

Remark: For practical routing instances ρ and $|\overline{\mathcal{R}}|$ are usually small.

$$
(2+4 \text { points })
$$

Deadline: June $26^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss18/chipss18.html

In case of any questions feel free to contact me at bihler@or.uni-bonn.de.

Save the date: The student council of mathematics will organize the math party on $21 / 06$ in the N8schicht. The presale will be held on Mon 18/06, Tue 19/06 and Wed 20/06 in the mensa Poppelsdorf. Further information can be found at http://fsmath.uni-bonn.de/.

