Exercise Set 9

Exercise 9.1. Let (G, H) be a pair of undirected graphs on V(G) = V(H) with capacities $u : E(G) \to \mathbb{R}_+$ and demands $b : E(H) \to \mathbb{R}_+$. A concurrent flow of value $\alpha > 0$ is a family $(x^f)_{f \in E(H)}$ where x^f is an s-t-flow of value $\alpha \cdot b(f)$ in $(V(G), \{(v, w), (w, v) \mid \{v, w\} \in E(G)\})$ for each $f = \{t, s\} \in E(H)$, and

$$\sum_{f \in E(H)} x^f ((v, w)) + x^f ((w, v)) \le u(e)$$

for all $e = \{v, w\} \in E(G)$. The MAXIMUM CONCURRENT FLOW PROBLEM is to find a concurrent flow with maximum value $\alpha > 0$.

Prove that the MAXIMUM CONCURRENT FLOW PROBLEM is a special case of the MIN-MAX RESOURCE SHARING PROBLEM. Specify how to implement block solvers.

(5 points)

Exercise 9.2. Consider the ESCAPE ROUTING PROBLEM: We are given a complete 2-dimensional grid graph G = (V, E) (i.e. $V = \{0, \ldots, k-1\} \times \{0, \ldots, k-1\}$ and $E = \{\{v, w\} \mid v, w \in V, ||v - w|| = 1\}$) and a set $P = \{p_1, \ldots, p_m\} \subseteq V$. The task is to compute vertex-disjoint paths $\{q_1, \ldots, q_m\}$ s.t. each q_i connects p_i with a point on the border $B = \{(x, y) \in V \mid \{x, y\} \cap \{0, k-1\} \neq \emptyset\}$.

Find a polynomial-time algorithm for the ESCAPE ROUTING PROBLEM or prove that the problem is NP-hard.

(4 points)

Exercise 9.3. Show that the VERTEX-DISJOINT PATHS PROBLEM is NPcomplete even if G is a subgraph of a track graph G_T with two routing planes. Recall that in this case G_T is a graph $G_T = (V, E)$ for some $n_x, n_y \in \mathbb{N}$ with $V = \{1, \ldots, n_x\} \times \{1, \ldots, n_y\} \times \{1, 2\}$ and $E = \{\{(x, y, z), (x', y', z')\} : |x - x'|z + |y - y'|(3 - z) + |z - z'| = 1\}.$

Hint: Consider the proof of Theorem 5.2.

(5 points)

Exercise 9.4. Given an instance of the MIN-MAX RESOURCE SHARING PROBLEM with σ -optimal block solvers for some fixed $\sigma \geq 1$.

(a) Show that t phases of the RESOURCE SHARING ALGORITHM call the oracle at most

$$\min\left\{t\Lambda, \ t|\mathcal{N}| + \frac{|\mathcal{R}'|}{\varepsilon}\ln\left(\mathbb{1}^{\mathsf{T}}y^{(t)}\right)\right\}$$

times where $\Lambda := \sum_{N \in \mathcal{N}} \max\{1, \sup\{b_r \mid r \in \mathcal{R}, b \in \mathcal{B}_N\}\}$ and $\mathcal{R}' := \{r \in \mathcal{R} \mid \exists N \in \mathcal{N}, b \in \mathcal{B}_N \text{ with } b_r > 1\}.$

(b) Prove that a $\sigma(1 + \omega)$ -approximate solution can be computed in

$$O\left(\theta \log |\mathcal{R}|\left(\left(|\mathcal{N}| + |\mathcal{R}|\right) \log \log |\mathcal{R}| + \sigma \omega^{-2} \min\left\{\rho |\mathcal{N}|, |\mathcal{N}| + |\overline{\mathcal{R}}|\sigma\right\}\right)\right)$$

time where $\rho := \max\{1, \sup\{b_r/\lambda^* \mid r \in \mathcal{R}, N \in \mathcal{N}, b \in \mathcal{B}_N\}\}$ and $\overline{\mathcal{R}} := \{r \in \mathcal{R} \mid \exists N \in \mathcal{N}, b \in \mathcal{B}_N \text{ with } b_r > \lambda^*\}.$

Remark: For practical routing instances ρ and $|\overline{\mathcal{R}}|$ are usually small. (2 + 4 points)

Deadline: June 26th, before the lecture. The websites for lecture and exercises can be found at:

In case of any questions feel free to contact me at bihler@or.uni-bonn.de.

Save the date: The student council of mathematics will organize the math party on 21/06 in the N8schicht. The presale will be held on Mon 18/06, Tue 19/06 and Wed 20/06 in the mensa Poppelsdorf. Further information can be found at http://fsmath.uni-bonn.de/.