Exercise Set 10

Exercise 10.1. Let $\alpha>1$ and $1 \leq \beta<1+2 /(\alpha-1)$. Construct a connected, planar graph G with $w: E(G) \rightarrow \mathbb{R}_{+}$and $r \in V(G)$ that contains no spanning tree T with the following properties:
(a) For each $v \in V(G): \operatorname{dist}_{w, T}(r, v) \leq \alpha \cdot \operatorname{dist}_{w, G}(r, v)$.
(b) For a minimum-spanning tree $M: \sum_{e \in E(T)} w(e) \leq \beta \cdot \sum_{e \in E(M)} w(e)$.

Exercise 10.2. Given a root $r \in \mathbb{R}^{2}$, a finite set of $\operatorname{sinks} S \subset \mathbb{R}^{2}$, Lagrangean multipliers $\left(\lambda_{s}\right)_{s \in S}$, the rectilinear cost-distance Steiner arborescence problem asks for a Steiner arborescence Y rooted at r, minimizing

$$
\sum_{(v, w) \in E(Y)}\|v-w\|_{1}+\sum_{s \in S} \lambda_{s} \cdot\left(\sum_{(v, w) \in E\left(Y_{[r, s]}\right)}\|v-w\|_{1}\right)
$$

Using the light-approximate shortest path tree algorithm, approximate this problem up to a factor of 3 in $\mathcal{O}(n \log n)$.

Exercise 10.3. A posynomial function $f: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}$ is of the form

$$
f(x)=\sum_{k=1}^{K} c_{k} \prod_{i=1}^{n} x_{i}^{a_{i k}}
$$

for $K \in \mathbb{N}, c_{k}>0$ and $a_{i k} \in \mathbb{R}$.
(a) Give an example for a non-convex posynomial function.
(b) Let f be a posynomial function with lower and upper bounds $l, u \in \mathbb{R}_{>0}^{n}$, $l \leq u$ on the variables. Show that each local minimum of f on the box $[l, u]$ is also a global minimum of f on $[l, u]$.
Hint: Use a logarithmic variable transformation to derive an equivalent convex problem.

$$
(2+3 \text { points })
$$

Exercise 10.4. Consider a chain of $n \in \mathbb{N}$ continuously sizable inverters with sizes $x_{i}>0(1 \leq i \leq n)$ depicted in Figure 10.1. Assume that the delay

Figure 10.1: Chain of inverters.
θ_{i} through inverter i is given by

$$
\theta_{i}(x)=\alpha+\frac{\beta \cdot x_{i+1}}{x_{i}} \quad \text { for } 1 \leq i<n-1
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), \alpha \geq 0, \beta>0$. Wire delays, slews and transitions are ignored.

Derive a closed formula for the size x_{i} of the i-th inverter in a solution x of the total delay minimization problem for fixed x_{1}, x_{n} :

$$
\min \left\{\sum_{i=1}^{n-1} \theta_{i}(x): x_{i}>0 \text { for all } 2 \leq i \leq n-1\right\}
$$

(5 points)

Deadline: July $10^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss18/chipss18.html
In case of any questions feel free to contact me at bihler@or.uni-bonn.de.

