Mathematische Optimierung I

Wintersemester 2004/2005

Abgabe: Dienstag, 23. November, vor der Vorlesung

Übungsblatt 5

Sei im folgenden $P = \{x | Ax \leq b\}$ ein nicht leerer Polyeder mit $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^m$. Wir führen folgende Notation ein:

- $\bullet \ A^=x \leq b^=$ sei das System der impliziten Gleichungen von $Ax \leq b$ und
- $A^+x \leq b^+$ das System aller anderen Ungleichungen von $Ax \leq b$.

Aufgabe 29:

Zeigen Sie, dass ein $x \in P$ existiert mit $A^{=}x = b^{=}, A^{+}x < b^{+}$.

(2 Punkte)

Aufgabe 30:

Wir betrachten nun den charakteristischen Kegel char.cone(P) von P. Beweisen Sie die folgenden Aussagen:

- a) char.cone $(P) = \{y | Ay \le 0\}.$
- b) Es gilt $y \in \text{char.cone}(P)$ genau dann, wenn ein $x \in P$ existiert mit $x + \lambda y \in P$ für alle $\lambda \geq 0$.
- c) P + char.cone(P) = P.
- d) P ist genau dann beschränkt, wenn char.cone $(P) = \{0\}$.
- e) Gilt P = Q + C mit Q Polytop und C polyhedraler Kegel, dann ist C = char.cone(P).

(6 Punkte)

 $A.31 - A.33 \rightarrow$

Aufgabe 31:

Beweisen Sie die folgenden Aussagen:

- a) $lin.space(P) = \{y | Ay = 0\}.$
- b) P kann eindeutig dargestellt werden als P = H + Q, wobei H ein linearer Raum und Q ein nicht-leerer Polyeder mit $\dim(\lim \operatorname{space}(Q)) = 0$ ist.

(6 Punkte)

Aufgabe 32:

Beweisen Sie die folgenden Ausssagen:

- a) $aff(P) = \{x | A^{=}x = b^{=}\} = \{x | A^{=}x \le b^{=}\}.$
- b) Die Dimension von P ist gleich n minus dem Rang der Matrix $A^{=}$.

(6 Punkte)

Aufgabe 33:

Beweisen Sie folgende Aussagen:

- a) Jede Seitenfläche von P, außer P selber, ist der Schnitt von Facetten von P.
- b) P hat genau dann keine Seitenfläche ungleich P, wenn P ein affiner Raum ist.
- c) Jede minimale Seitenfläche von P hat die Form lin.space(P) + x für ein $x \in \mathbb{R}^n$.

(6 Punkte)