Lineare und Ganzzahlige Optimierung WS 2008/2009 Übungszettel 4

Aufgabe 1:

Zeigen Sie, dass jedes Polyeder eine Darstellung als Summe

$$Q + C = \{q + c : q \in Q, c \in C\}$$

aus einem Polytop P und einem polyedrischen Kegel C hat.

(4 Punkte)

Aufgabe 2:

Sei A eine nicht-singulare rationale $x \times n$ -Matrix. Zeigen Sie, dass size $(A^{-1}) \le 4n^2$ size(A) gilt.

(4 Punkte)

Aufgabe 3:

Sei $X \subset \mathbb{R}^n$ eine nichtleere konvexe Menge, \tilde{X} der Abschluss von X und $y \notin X$. Beweisen Sie:

- a) Es gibt einen eindeutig bestimmten Punkt in \tilde{X} mit minimalen Abstanz zu y.
- b) Es gibt einen Vektor $a \in \mathbb{R}n$ mit $a^T x < a^T y$ für alle $x \in X$.
- c) Ist X beschränkt und $y \notin \tilde{X}$, so gibt es einen Vektor $a \in \mathbb{Q}^n$ mit $a^T x < a^T y$ für alle $x \in X$.
- d) Eine abgeschlossene konvexe Menge ist der Durchschnitt aller abgeschlossener Halbräume, in denen sie enthalten ist.

(4 Punkte)

Aufgabe 4:

Die Firma Dorian Auto überlegt drei verschiedene Autoklassen zu produzieren: Kompakt-, Mittel- und Luxusklasse. Die benötigte Menge an Stahl und Arbeitszeit sowie der Profit je Auto jeder der drei Klassen sind in der folgenden Tabelle aufgelistet:

	Kompakt	Mittel	Luxus
	1.5 Tonnen		
Arbeitszeit	30 Stunden	25 Stunden	40 Stunden
Profit	2000 EUR	$3000~{\rm EUR}$	$4000~{\rm EUR}$

Es stehen insgesamt 6 000 Tonnen Stahl und 60 000 Arbeitsstunden zur Verfügung. Um eine Wagenklasse zu produzieren müssen aus ökonomischen Gründen mindestens 1 000 Wagen dieser Klasse produziert werden. Die Firma Dorian möchte ihren Profit maximieren.

Formulieren Sie dieses Problem als Ganzzahliges Lineares Programm, und lösen Sie es. (4 Punkte)

Abgabe: Donnerstag, den 20.11.08, vor der Vorlesung