Wintersemester 2015/16 Prof. Dr. S. Hougardy Dr. U. Brenner

Einführung in die Diskrete Mathematik 6. Übung

- 1. Sei G ein gerichteter Graph mit konservativen Kantengewichten $c: E(G) \to \mathbb{R}$. Seien s und t zwei verschiedene Knoten in G, wobei t in G von s aus erreichbar sei. Zeigen sie die folgenden Aussagen:
 - (a) Die minimale Länge eines s-t-Weges in G ist gleich dem maximalen Wert von $\pi(t) \pi(s)$, wobei π ein zulässiges Potential von (G, c) sei.
 - (b) Wenn zusätzlich alle Kantengewichte positive ganze Zahlen sind, dann ist die minimale Länge eines s-t-Weges in G gleich der maximalen Anzahl von s und t trennenden Schnitten mit der Eigenschaft, dass jede Kante e in höchstens c(e) von ihnen enthalten ist. (2+3 Punkte)
- 2. Sei G ein gerichteter Graph mit Kantengewichten $c: E(G) \to \mathbb{R}_+$. Seien $s, t \in V(G), L \subseteq V(G), L \neq \emptyset$, so dass von jedem Knoten aus jedes Element von L erreichbar ist, und $\pi(v) := \min \left\{ 0, \min_{l \in L} \left(\operatorname{dist}_{(G,c)}(t,l) \operatorname{dist}_{(G,c)}(v,l) \right) \right\}$ für $v \in V(G)$. Beweisen Sie die folgenden Aussagen:
 - (a) π ist ein zulässiges Potential in (G, c).
 - (b) Jeder kürzeste s-t-Weg in (G, c_{π}) ist ein kürzester s-t-Weg in (G, c).
 - (c) $\left\{v \in V(G) \mid \text{dist}_{(G,c_{\pi})}(s,v) < \text{dist}_{(G,c_{\pi})}(s,t)\right\} \subseteq \left\{v \in V(G) \mid \text{dist}_{(G,c)}(s,v) < \text{dist}_{(G,c)}(s,t)\right\}.$ (2+1+2 Punkte)

Bemerkung: Wenn man eine große Anzahl von Kürzeste-Wege-Berechnungen im selben Graphen durchführen muss, kann es sich lohnen, vorher Abstände zu einer gewissen Menge L von Knoten zu berechnen, die als Orientierungspunkte dienen. Unter Ausnutzung der obigen Eigenschaften kann man damit die Aufrufe von DIJKSTRAS ALGORITHMUS in der Praxis beschleunigen.

- 3. Sei G ein Graph mit Kantenlängen $c: E(G) \to \mathbb{R}_+$ und $s, t \in V$. Wir wollen einen kürzesten s-t-Weg finden, indem wir Dijkstras Algorithmus von beiden Knoten s und t aus starten. Wir stoppen, sobald ein Knoten $v \in V$ für beide Suchen aus der Menge Q entfernt wurde.
 - a) Geben Sie ein Beispiel an, in dem dann $l_s(v) + l_t(v) > \text{dist}(s,t)$ gilt (wobei l_s und l_t die von den beiden Dijkstra-Aufrufen vergebenen Knotenmarkierungen seien).
 - b) Wie findet man mit dieser Abbruchbedingung dennoch einen kürzesten s-t-Weg?

(5 Punkte)

4. Sei G ein gerichteter Graph mit konservativen Kantengewichten $c: E(G) \to \mathbb{R}$. Es sei außerdem eine Lösung des KÜRZESTE-WEGE-PROBLEMS FÜR ALLE PAARE für diese Instanz gegeben. Für je zwei Knoten s und t sei also die Länge eines kürzesten s-t-Weges in (G,c) bekannt. Sei nun $e_0 \in E(G)$ und $\delta > 0$, und es sei $c': E(G) \to \mathbb{R}$ definiert durch $c'(e_0) = c(e_0) - \delta$ und c'(e) = c(e) für $e \in E(G) \setminus \{e_0\}$. Wie kann man in konstanter Zeit überprüfen, ob c' ebenfalls konservativ ist? Und falls c' konservativ ist, wie kann man in Zeit $O(n^2)$ eine Lösung für das KÜRZESTE-WEGE-PROBLEM FÜR ALLE PAARE in (G,c') berechnen?

Abgabe: Donnerstag, den 10.12.2015, vor der Vorlesung.