
TSPLIB95

Gerhard Reinelt
Universität Heidelberg

Institut für Angewandte Mathematik
Im Neuenheimer Feld 294

D-69120 Heidelberg
Gerhard.Reinelt@IWR.Uni-Heidelberg.DE

TSPLIB is a library of sample instances for the TSP (and related problems) from various
sources and of various types. Instances of the following problem classes are available.

Symmetric traveling salesman problem (TSP)
Given a set of n nodes and distances for each pair of nodes, find a roundtrip of minimal
total length visiting each node exactly once. The distance from node i to node j is the
same as from node j to node i.

Hamiltonian cycle problem (HCP)
Given a graph, test if the graph contains a Hamiltonian cycle or not.

Asymmetric traveling salesman problem (ATSP)
Given a set of n nodes and distances for each pair of nodes, find a roundtrip of minimal
total length visiting each node exactly once. In this case, the distance from node i to node
j and the distance from node j to node i may be different.

Sequential ordering problem (SOP)
This problem is an asymmetric traveling salesman problem with additional constraints.
Given a set of n nodes and distances for each pair of nodes, find a Hamiltonian path from
node 1 to node n of minimal length which takes given precedence constraints into account.
Each precedence constraint requires that some node i has to be visited before some other
node j.

Capacitated vehicle routing problem (CVRP)
We are given n− 1 nodes, one depot and distances from the nodes to the depot, as well as
between nodes. All nodes have demands which can be satisfied by the depot. For delivery
to the nodes, trucks with identical capacities are available. The problem is to find tours for
the trucks of minimal total length that satisfy the node demands without violating truck
capacity constraint. The number of trucks is not specified. Each tour visits a subset of the
nodes and starts and terminates at the depot. (Remark: In some data files a collection of
alternate depots is given. A CVRP is then given by selecting one of these depots.)

Except, for the Hamiltonian cycle problems, all problems are defined on a complete graph
and, at present, all distances are integer numbers. There is a possibility to require that
certain edges appear in the solution of a problem.

1

1. The file format

Each file consists of a specification part and of a data part. The specification part
contains information on the file format and on its contents. The data part contains explicit
data.

1.1 The specification part

All entries in this section are of the form <keyword> : <value>, where <keyword> de-
notes an alphanumerical keyword and <value> denotes alphanumerical or numerical data.
The terms <string>, <integer> and <real> denote character string, integer or real data,
respectively. The order of specification of the keywords in the data file is arbitrary (in
principle), but must be consistent, i.e., whenever a keyword is specified, all necessary in-
formation for the correct interpretation of the keyword has to be known. Below we give a
list of all available keywords.

1.1.1 NAME : <string>

Identifies the data file.

1.1.2 TYPE : <string>

Specifies the type of the data. Possible types are
TSP Data for a symmetric traveling salesman problem
ATSP Data for an asymmetric traveling salesman problem
SOP Data for a sequential ordering problem
HCP Hamiltonian cycle problem data
CVRP Capacitated vehicle routing problem data
TOUR A collection of tours

1.1.3 COMMENT : <string>

Additional comments (usually the name of the contributor or creator of the problem in-
stance is given here).

1.1.4 DIMENSION : <integer>

For a TSP or ATSP, the dimension is the number of its nodes. For a CVRP, it is the total
number of nodes and depots. For a TOUR file it is the dimension of the corresponding
problem.

1.1.5 CAPACITY : <integer>

Specifies the truck capacity in a CVRP.

1.1.6 EDGE WEIGHT TYPE : <string>

Specifies how the edge weights (or distances) are given. The values are
EXPLICIT Weights are listed explicitly in the corresponding section
EUC 2D Weights are Euclidean distances in 2-D
EUC 3D Weights are Euclidean distances in 3-D

2

MAX 2D Weights are maximum distances in 2-D
MAX 3D Weights are maximum distances in 3-D
MAN 2D Weights are Manhattan distances in 2-D
MAN 3D Weights are Manhattan distances in 3-D
CEIL 2D Weights are Euclidean distances in 2-D rounded up
GEO Weights are geographical distances
ATT Special distance function for problems att48 and att532

XRAY1 Special distance function for crystallography problems (Version 1)
XRAY2 Special distance function for crystallography problems (Version 2)
SPECIAL There is a special distance function documented elsewhere

1.1.7 EDGE WEIGHT FORMAT : <string>

Describes the format of the edge weights if they are given explicitly. The values are
FUNCTION Weights are given by a function (see above)
FULL MATRIX Weights are given by a full matrix
UPPER ROW Upper triangular matrix (row-wise without diagonal entries)
LOWER ROW Lower triangular matrix (row-wise without diagonal entries)
UPPER DIAG ROW Upper triangular matrix (row-wise including diagonal entries)
LOWER DIAG ROW Lower triangular matrix (row-wise including diagonal entries)
UPPER COL Upper triangular matrix (column-wise without diagonal entries)
LOWER COL Lower triangular matrix (column-wise without diagonal entries)
UPPER DIAG COL Upper triangular matrix (column-wise including diagonal entries)
LOWER DIAG COL Lower triangular matrix (column-wise including diagonal entries)

1.1.7 EDGE DATA FORMAT : <string>

Describes the format in which the edges of a graph are given, if the graph is not complete.
The values are

EDGE LIST The graph is given by an edge list
ADJ LIST The graph is given as an adjacency list

1.1.9 NODE COORD TYPE : <string>

Specifies whether coordinates are associated with each node (which, for example may be
used for either graphical display or distance computations). The values are

TWOD COORDS Nodes are specified by coordinates in 2-D
THREED COORDS Nodes are specified by coordinates in 3-D
NO COORDS The nodes do not have associated coordinates

The default value is NO COORDS.

1.1.10 DISPLAY DATA TYPE : <string>

Specifies how a graphical display of the nodes can be obtained. The values are
COORD DISPLAY Display is generated from the node coordinates
TWOD DISPLAY Explicit coordinates in 2-D are given
NO DISPLAY No graphical display is possible

The default value is COORD DISPLAY if node coordinates are specified and NO DISPLAY

otherwise.

3

1.1.11 EOF :

Terminates the input data. This entry is optional.

1.2 The data part

Depending on the choice of specifications some additional data may be required. These
data are given in corresponding data sections following the specification part. Each data
section begins with the corresponding keyword. The length of the section is either implicitly
known from the format specification, or the section is terminated by an appropriate end-
of-section identifier.

1.2.1 NODE COORD SECTION :

Node coordinates are given in this section. Each line is of the form

<integer> <real> <real>

if NODE COORD TYPE is TWOD COORDS, or

<integer> <real> <real> <real>

if NODE COORD TYPE is THREED COORDS. The integers give the number of the respective
nodes. The real numbers give the associated coordinates.

1.2.2 DEPOT SECTION :

Contains a list of possible alternate depot nodes. This list is terminated by a −1.

1.2.3 DEMAND SECTION :

The demands of all nodes of a CVRP are given in the form (per line)

<integer> <integer>

The first integer specifies a node number, the second its demand. The depot nodes must
also occur in this section. Their demands are 0.

1.2.4 EDGE DATA SECTION :

Edges of a graph are specified in either of the two formats allowed in the EDGE DATA FORMAT

entry. If the type is EDGE LIST, then the edges are given as a sequence of lines of the form

<integer> <integer>

each entry giving the terminal nodes of some edge. The list is terminated by a −1.

If the type is ADJ LIST, the section consists of a list of adjacency lists for nodes. The
adjacency list of a node x is specified as

<integer> <integer> . . . <integer> −1

where the first integer gives the number of node x and the following integers (terminated
by −1) the numbers of nodes adjacent to x. The list of adjacency lists is terminated by
an additional −1.

4

1.2.5 FIXED EDGES SECTION :

In this section, edges are listed that are required to appear in each solution to the problem.
The edges to be fixed are given in the form (per line)

<integer> <integer>

meaning that the edge (arc) from the first node to the second node has to be contained in
a solution. This section is terminated by a −1.

1.2.6 DISPLAY DATA SECTION :

If DISPLAY DATA TYPE is TWOD DISPLAY, the 2-dimensional coordinates from which a display
can be generated are given in the form (per line)

<integer> <real> <real>

The integers specify the respective nodes and the real numbers give the associated coordi-
nates.

1.2.7 TOUR SECTION :

A collection of tours is specified in this section. Each tour is given by a list of integers giving
the sequence in which the nodes are visited in this tour. Every such tour is terminated by
a −1. An additional −1 terminates this section.

1.2.8 EDGE WEIGHT SECTION :

The edge weights are given in the format specified by the EDGE WEIGHT FORMAT entry. At
present, all explicit data is integral and is given in one of the (self-explanatory) matrix
formats. with implicitly known lengths.

5

2. The distance functions

For the various choices of EGDE WEIGHT TYPE, we now describe the computations of the rep-
sective distances. In each case we give a (simplified) C-implementation for computing the
distances from the input coordinates. All computations involving floating-point numbers
are carried out in double precision arithmetic. The integers are assumed to be represented
in 32-bit words. Since distances are required to be integral, we round to the nearest inte-
ger (in most cases). Below we have used the rounding function “nint” (“nint(x)” can be
replaced by “(int) (x+0.5)”).

2.1 Euclidean distance (L2-metric)

For edge weight type EUC 2D and EUC 3D, floating point coordinates must be specified for
each node. Let x[i], y[i], and z[i] be the coordinates of node i.
In the 2-dimensional case the distance between two points i and j is computed as follows:

xd = x[i] - x[j];
yd = y[i] - y[j];
dij = nint(sqrt(xd*xd + yd*yd));

In the 3-dimensional case we have:

xd = x[i] - x[j];
yd = y[i] - y[j];
zd = z[i] - z[j];
dij = nint(sqrt(xd*xd + yd*yd + zd*zd));

where sqrt is the C square root function.

2.2 Manhattan distance (L1-metric)

Distances are given as Manhattan distances if the edge weight type is MAN 2D or MAN 3D.
They are computed as follows.
2-dimensional case:

xd = abs(x[i] - x[j]);
yd = abs(y[i] - y[j]);
dij = nint(xd + yd);

3-dimensional case:

xd = abs(x[i] - x[j]);
yd = abs(y[i] - y[j]);
zd = abs(z[i] - z[j]);
dij = nint(xd + yd + zd);

2.3 Maximum distance (L∞-metric)

Maximum distances are computed if the edge weight type is MAX 2D or MAX 3D.
2-dimensional case:

xd = abs(x[i] - x[j]);
yd = abs(y[i] - y[j]);
dij = max(nint(xd), nint(yd)));

6

3-dimensional case:

xd = abs(x[i] - x[j]);
yd = abs(y[i] - y[j]);
zd = abs(z[i] - z[j]);
dij = max(nint(xd), nint(yd), nint(zd));

2.4 Geographical distance

If the traveling salesman problem is a geographical problem, then the nodes correspond to
points on the earth and the distance between two points is their distance on the idealized
sphere with radius 6378.388 kilometers. The node coordinates give the geographical lat-
itude and longitude of the corresponding point on the earth. Latitude and longitude are
given in the form DDD.MM where DDD are the degrees and MM the minutes. A positive lati-
tude is assumed to be “North”, negative latitude means “South”. Positive longitude means
“East”, negative latitude is assumed to be “West”. For example, the input coordinates for
Augsburg are 48.23 and 10.53, meaning 48o23´ North and 10o53´ East.
Let x[i] and y[i] be coordinates for city i in the above format. First the input is converted
to geographical latitude and longitude given in radians.

PI = 3.141592;

deg = nint(x[i]);
min = x[i] - deg;
latitude[i] = PI * (deg + 5.0 * min / 3.0) / 180.0;
deg = nint(y[i]);
min = y[i] - deg;
longitude[i] = PI * (deg + 5.0 * min / 3.0) / 180.0;

The distance between two different nodes i and j in kilometers is then computed as follows:

RRR = 6378.388;

q1 = cos(longitude[i] - longitude[j]);
q2 = cos(latitude[i] - latitude[j]);
q3 = cos(latitude[i] + latitude[j]);
dij = (int) (RRR * acos(0.5*((1.0+q1)*q2 - (1.0-q1)*q3)) + 1.0);

The function “acos” is the inverse of the cosine function.

2.5 Pseudo-Euclidean distance

The edge weight type ATT corresponds to a special “pseudo-Euclidean” distance function.
Let x[i] and y[i] be the coordinates of node i. The distance between two points i and j

is computed as follows:

xd = x[i] - x[j];
yd = y[i] - y[j];
rij = sqrt((xd*xd + yd*yd) / 10.0);
tij = nint(rij);
if (tij<rij) dij = tij + 1;
else dij = tij;

7

2.6 Ceiling of the Euclidean distance

The edge weight type CEIL 2D requires that the 2-dimensional Euclidean distances is
rounded up to the next integer.

2.7 Distance for crystallography problems

We have included into TSPLIB the crystallography problems as described in [1]. These
problems are not explicitly given but subroutines are provided to generate the 12 problems
mentioned in this reference and subproblems thereof (see section 3.2).
To compute distances for these problems the movement of three motors has to be taken into
consideration. There are two types of distance functions: one that assumes equal speed
of the motors (XRAY1) and one that uses different speeds (XRAY2). The corresponding
distance functions are given as FORTRAN implementations (files deq.f, resp. duneq.f) in
the distribution file.
For obtaining integer distances, we propose to multiply the distances computed by the
original subroutines by 100.0 and round to the nearest integer.
We list our modified distance function for the case of equal motor speeds in the FORTRAN
version below.

INTEGER FUNCTION ICOST(V,W)
INTEGER V,W
DOUBLE PRECISION DMIN1,DMAX1,DABS
DOUBLE PRECISION DISTP,DISTC,DISTT,COST
DISTP=DMIN1(DABS(PHI(V)-PHI(W)),DABS(DABS(PHI(V)-PHI(W))-360.0E+0))
DISTC=DABS(CHI(V)-CHI(W))
DISTT=DABS(TWOTH(V)-TWOTH(W))
COST=DMAX1(DISTP/1.00E+0,DISTC/1.0E+0,DISTT/1.00E+0)

C *** Make integral distances ***
ICOST=AINT(100.0E+0*COST+0.5E+0)
RETURN
END

The numbers PHI(), CHI(), and TWOTH() are the respective x-, y-, and z-coordinates of
the points in the generated traveling salesman problems. Note, that TSPLIB95 contains
only the original distance computation without the above modification.

2.7 Verification

To verify correctness of the distance function implementations we give the length of some
“canonical” tours 1, 2, 3, . . . , n.
The canonical tours for pcb442, gr666, and att532 have lengths 221 440, 423 710, and
309 636, respectively.
The canonical tour for the problem xray14012 (the 8th problem considered in [21]) with
distance XRAY1 has length 15 429 219. With distance XRAY2 it has the length 12 943 294.

8

3. Description of the library files

In this section we give a list of all problem instances that are currently available together
with information on the length of optimal tours or lower and upper bounds for this length
(if available).

3.1 Symmetric traveling salesman problems

The TSP instances are contained in directory tsp. Table 1 gives the problem names along
with number of cities, problem type, and known lower and upper bounds for the optimal
tour length (a single number indicating that the optimal length is known). The entry
MATRIX indicates that the data is given in one of the matrix formats of 1.1.7. The names
of the corresponding data files are obtained by appending the suffix “.tsp” to the problem
name. Some optimal tours are also provided. The corresponding files have names with
suffix “.opt.tour”.

Name #cities Type Bounds

a280 280 EUC 2D 2579

ali535 535 GEO 202310

att48 48 ATT 10628

att532 532 ATT 27686

bayg29 29 GEO 1610

bays29 29 GEO 2020

berlin52 52 EUC 2D 7542

bier127 127 EUC 2D 118282

brazil58 58 MATRIX 25395

brd14051 14051 EUC 2D [468942,469445]
brg180 180 MATRIX 1950

burma14 14 GEO 3323

ch130 130 EUC 2D 6110

ch150 150 EUC 2D 6528

d198 198 EUC 2D 15780

d493 493 EUC 2D 35002

d657 657 EUC 2D 48912

d1291 1291 EUC 2D 50801

d1655 1655 EUC 2D 62128

d2103 2103 EUC 2D [79952,80450]

d15112 15112 EUC 2D [1564590,1573152]

d18512 18512 EUC 2D [644650,645488]
dantzig42 42 MATRIX 699

dsj1000 1000 CEIL 2D 18659688

eil51 51 EUC 2D 426

eil76 76 EUC 2D 538

eil101 101 EUC 2D 629

Table 1 Symmetric traveling salesman problems (Part I)

9

Name #cities Type Bounds

fl417 417 EUC 2D 11861

fl1400 1400 EUC 2D 20127

fl1577 1577 EUC 2D [22204,22249]

fl3795 3795 EUC 2D [28723,28772]
fnl4461 4461 EUC 2D 182566

fri26 26 MATRIX 937

gil262 262 EUC 2D 2378

gr17 17 MATRIX 2085

gr21 21 MATRIX 2707

gr24 24 MATRIX 1272

gr48 48 MATRIX 5046

gr96 96 GEO 55209

gr120 120 MATRIX 6942

gr137 137 GEO 69853

gr202 202 GEO 40160

gr229 229 GEO 134602

gr431 431 GEO 171414

gr666 666 GEO 294358

hk48 48 MATRIX 11461

kroA100 100 EUC 2D 21282

kroB100 100 EUC 2D 22141

kroC100 100 EUC 2D 20749

kroD100 100 EUC 2D 21294

kroE100 100 EUC 2D 22068

kroA150 150 EUC 2D 26524

kroB150 150 EUC 2D 26130

kroA200 200 EUC 2D 29368

kroB200 200 EUC 2D 29437

lin105 105 EUC 2D 14379

lin318 318 EUC 2D 42029

linhp318 318 EUC 2D 41345

nrw1379 1379 EUC 2D 56638

p654 654 EUC 2D 34643

pa561 561 MATRIX 2763

pcb442 442 EUC 2D 50778

pcb1173 1173 EUC 2D 56892

pcb3038 3038 EUC 2D 137694

pla7397 7397 CEIL 2D 23260728

pla33810 33810 CEIL 2D [65913275,66116530]

pla85900 85900 CEIL 2D [141904862,142487006]

Table 1 Symmetric traveling salesman problems (Part II)

10

Name #cities Type Bounds

pr76 76 EUC 2D 108159

pr107 107 EUC 2D 44303

pr124 124 EUC 2D 59030

pr136 136 EUC 2D 96772

pr144 144 EUC 2D 58537

pr152 152 EUC 2D 73682

pr226 226 EUC 2D 80369

pr264 264 EUC 2D 49135

pr299 299 EUC 2D 48191

pr439 439 EUC 2D 107217

pr1002 1002 EUC 2D 259045

pr2392 2392 EUC 2D 378032

rat99 99 EUC 2D 1211

rat195 195 EUC 2D 2323

rat575 575 EUC 2D 6773

rat783 783 EUC 2D 8806

rd100 100 EUC 2D 7910

rd400 400 EUC 2D 15281

rl1304 1304 EUC 2D 252948

rl1323 1323 EUC 2D 270199

rl1889 1889 EUC 2D 316536

rl5915 5915 EUC 2D [565040,565530]

rl5934 5934 EUC 2D [554070,556045]

rl11849 11849 EUC 2D [920847,923368]
si175 175 MATRIX 21407

si535 535 MATRIX 48450

si1032 1032 MATRIX 92650

st70 70 EUC 2D 675

swiss42 42 MATRIX 1273

ts225 225 EUC 2D 126643

tsp225 225 EUC 2D 3919

u159 159 EUC 2D 42080

u574 574 EUC 2D 36905

u724 724 EUC 2D 41910

u1060 1060 EUC 2D 224094

u1432 1432 EUC 2D 152970

u1817 1817 EUC 2D 57201

u2152 2152 EUC 2D 64253

u2319 2319 EUC 2D 234256

ulysses16 16 GEO 6859

ulysses22 22 GEO 7013

usa13509 13509 EUC 2D [19947008,19982889]
vm1084 1084 EUC 2D 239297

vm1748 1748 EUC 2D 336556

Table 1 Symmetric traveling salesman problems (Part III)

11

Crystallography problems

In the file xray.problems in directory tsp we distribute the routines written by Bland
and Shallcross and the necessary data to generate the crystallography problems discussed
in [1]. The file xray.problems is one file into which the single files mentioned in the sequel
have been merged. These single files have to be extracted from xray.problems using an
editor. The following original files are provided

read.me deq.f duneq.f daux.f gentsp.f

a.data b.data d.data e.data f.data

In addition we have included specially prepared data files to generate the 12 problems
mentioned in [1]. The files have the names xray1.data through xray12.data.
Using these data files 12 symmetric TSPs can be generated using the program gentsp.f.
We propose to name the respective problem instances xray4472, xray2950, xray7008,
xray2762, xray6922, xray9070, xray5888, xray14012, xray5520, xray13804, xray14464,
and xray13590.

To verify the correct use of the generating routines we list part of the file xray14012.tsp.

NAME : xray14012
COMMENT : Crystallography problem 8 (Bland/Shallcross)
TYPE : TSP
DIMENSION : 14012
EDGE WEIGHT TYPE : XRAY2
NODE COORD SECTION

1 -91.802854544029 -6.4097888697337 176.39830490027

2 -87.715643397938 -6.4659384343446 165.56800324542

3 -83.587211962870 -6.4895404648110 163.53828545043

4 -79.460007412434 -6.4797580053949 165.86438271158

:

:

14009 100.539992581837 6.4797580053949 165.86438271158

14010 96.412788031401 6.4895404648110 163.53828545043

14011 92.284356596333 6.4659384343446 165.56800324542

14012 88.197145450242 6.4097888697337 176.39830490027

3.2 Hamiltonian cycle problems

Instances of the Hamiltonian cycle problem are contained in the directory hcp. At present,
we have the data files

alb1000.hcp alb3000b.hcp alb3000e.hcp alb2000.hcp alb3000c.hcp

alb4000.hcp alb3000a.hcp alb3000d.hcp alb5000.hcp

Every instance contains a Hamiltonian cycle which is given in the corresponding .opt.tour
file. In problem instance alb4000 two edges are fixed.
In addition to these files, the directory contains the C-program tspleap.c by M. Jünger
and G. Rinaldi. This program can be used to generate TSP instances (in TSPLIB format)

12

originating from the problem of deciding whether an (r,s)-leaper on a mxn chess board can
start at some square of the board, visit each square exactly once, and return to its starting
square. A detailed documentation is given in the file tspleap.c.

3.3 Asymmetric traveling salesman problems

Table 2 lists the ATSP instances (in directory atsp) together with their optimal solution
values. The names of the corresponding data files are obtained by appending the suffix
“.atsp” to the problem name. The data files for problems ftv90, ftv100, ftv110, ftv120,
ftv130, ftv140, ftv150, and ftv160 are not present. These instances are obtained from
ftv170. E.g., ftv120 is the subproblem of ftv170 defined by the first 121 nodes, ftv130
is defined by the first 131 nodes, etc.

Name #cities Type Optimum

br17 17 MATRIX 39

ft53 53 MATRIX 6905

ft70 70 MATRIX 38673

ftv33 34 MATRIX 1286

ftv35 36 MATRIX 1473

ftv38 39 MATRIX 1530

ftv44 45 MATRIX 1613

ftv47 48 MATRIX 1776

ftv55 56 MATRIX 1608

ftv64 65 MATRIX 1839

ftv70 71 MATRIX 1950

ftv90 91 MATRIX 1579

ftv100 101 MATRIX 1788

ftv110 111 MATRIX 1958

ftv120 121 MATRIX 2166

ftv130 131 MATRIX 2307

ftv140 141 MATRIX 2420

ftv150 151 MATRIX 2611

ftv160 161 MATRIX 2683

ftv170 171 MATRIX 2755

kro124 100 MATRIX 36230

p43 43 MATRIX 5620

rbg323 323 MATRIX 1326

rbg358 358 MATRIX 1163

rbg403 403 MATRIX 2465

rbg443 443 MATRIX 2720

ry48p 48 MATRIX 14422

Table 2 Asymmetric traveling salesman problems

3.4 Sequential ordering problems

Every instance of a sequential ordering problem is given by a full matrix C of the following
kind. If node i has to precede node j, then Cji is set to −1. C is assumed to be transitively
closed with respect to precedences, i.e., if i has to precede j and j has to precede k, then

13

it is implied that i has to precede k and, therefore, also Cki has to be set to −1. Because
we require, that node 1 is the first node and node n is the last node in each feasible path,
a SOP problem instance always has Ci1 = −1, for all i = 2, . . . , n, and Cnj = −1, for all
j = 1, . . . , n − 1. The entry C1n is set to infinity. All other entries of C are nonnegative
integer values.

Name #nodes #prec. Type Bounds

ESC07 9 6 MATRIX 2125

ESC11 13 3 MATRIX 2075

ESC12 14 7 MATRIX 1675

ESC25 27 9 MATRIX 1681

ESC47 49 10 MATRIX 1288

ESC63 65 95 MATRIX 62

ESC78 80 77 MATRIX 18230

br17.10 17 10 MATRIX 55

br17.12 17 12 MATRIX 55

ft53.1 54 12 MATRIX [7438,7570]

ft53.2 54 25 MATRIX [7630,8335]

ft53.3 54 48 MATRIX [9473,10935]
ft53.4 54 63 MATRIX 14425

ft70.1 71 17 MATRIX 39313

ft70.2 71 35 MATRIX [39739,41778]

ft70.3 71 68 MATRIX [41305,44732]

ft70.4 71 86 MATRIX [52269,53882]

kro124p.1 101 25 MATRIX [37722,42845]

kro124p.2 101 49 MATRIX [38534,45848]

kro124p.3 101 97 MATRIX [40967,55649]

kro124p.4 101 131 MATRIX [64858,80753]
p43.1 44 9 MATRIX 27990

p43.2 44 20 MATRIX [28175,28330]

p43.3 44 37 MATRIX [28366,28680]

p43.4 44 50 MATRIX [69569,82960]
prob42 42 10 MATRIX 243

prob100 100 41 MATRIX [1024,1385]
rbg048a 50 192 MATRIX 351

rbg050c 52 256 MATRIX 467

rbg109a 111 622 MATRIX 1038

rbg150a 152 952 MATRIX [1748,1750]
rbg174a 176 1113 MATRIX 2053

rbg253a 255 1721 MATRIX [2928,2987]

rbg323a 325 2412 MATRIX [3136,3221]

rbg341a 343 2542 MATRIX [2543,2854]

rbg358a 360 3239 MATRIX [2518,2758]

rbg378a 380 3069 MATRIX [2761,3142]

ry48p.1 49 11 MATRIX [15220,15935]

ry48p.2 49 23 MATRIX [15524,17071]

ry48p.3 49 42 MATRIX [18156,20051]

ry48p.4 49 58 MATRIX [29967,31446]

Table 3 Sequential ordering problems

14

Table 3 lists the SOP instances (in directory sop) together with their known lower and
upper bounds for the optimal path length. The names of the corresponding data files are
obtained by appending the suffix “.sop” to the problem name.

3.5 Capacitated vehicle routing problems

Data for capacitated vehicle routing problems is contained in the directory vrp. Data files
have suffix “.vrp”. At present, we have the data files

att48.vrp eil30.vrp eil7.vrp eilB76.vrp eil13.vrp

eil31.vrp eilA101.vrp eilC76.vrp eil22.vrp eil33.vrp

eilA76.vrp eilD76.vrp eil23.vrp eil51.vrp eilB101.vrp

gil262.vrp

Various problems can be defined on these data sets, e.g., depending on whether the number
of vehicles is fixed, so we do not list optimal solutions here. Some values are given in the
data files themselves.

3.6 Further special files

In addition to the data and solution files, the following special files are contained in the
library.

TSPLIB VERSION: Gives the current version of the library
README: A short information on TSPLIB
DOC.PS: Description of TSPLIB (PostScript)

4. Remarks

1. The problem lin318 is originally a Hamiltonian path problem. One obtains this prob-
lem by adding the additional requirement that the edge from 1 to 214 is contained in
the tour. The data is given in linhp318.tsp.

2. Some data sets are referred to by different names in the literature. Below we give the
corresponding names used in [3] and [2].

TSPLIB [3] [2] TSPLIB [3] [2]

att48 ATT048 - att532 ATT532 -

dantzig42 - 42 eil101 EIL10 -

eil51 EIL08 - eil76 EIL09 -

gil262 GIL249 - gr120 - 120

gr137 GH137 137 gr202 GH202 202

gr229 GH229 229 gr431 GH431 431

gr666 GH666 666 gr96 GH096 96

hk48 - 48H kroA100 KRO124 100A

kroB100 KRO125 100B kroC100 KRO126 100C

kroD100 KRO127 100D kroE100 KRO128 100E

15

kroA150 KRO30 - kroB150 KRO31 -

kroA200 KRO32 - kroB200 KRO33 -

lin105 LK105 - lin318 LK318 -

linhp318 LK318P - pr1002 TK1002 -

pr107 TK107 - pr124 TK124 -

pr136 TK136 - pr144 TK144 -

pr152 TK152 - pr226 TK226 -

pr2392 TK2392 - pr264 TK264 -

pr299 TK299 - pr439 TK439 -

pr76 TK076 - st70 KRO070 70

3. Some vehicle routing problems are also available in a TSP version. Here the depots are
just treated as normal nodes. The problem gil262 originally contained two identical
nodes, of which one was eliminated.

4. Potential contributors to this library should provide their data files in appropriate
format and contact

Gerhard Reinelt
Institut für Angewandte Mathematik, Universität Heidelberg
Im Neuenheimer Feld 294, D-69120 Heidelberg
Germany
Tel (6221) 56 3171
Fax (6221) 56 5634
E-Mail Gerhard.Reinelt@IWR.Uni-Heidelberg.DE

5.Informations on new bounds or optimal solutions for library problems as well as ref-
erences to computational studies (to be included in the list of references) are also
appreciated.

5. Access

TSPLIB is available at
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

References

1. R.E. Bland & D.F. Shallcross (1989). Large Traveling Salesman Problems Arising

from Experiments in X-ray Crystallography: A Preliminary Report on Computation,

Operations Research Letters 8, 125–128.

2. M. Grötschel & O. Holland (1991). Solution of Large-Scale Symmetric Travelling

Salesman Problems, Mathematical Programming 51, 141–202.

3. M.W. Padberg & G. Rinaldi (1991). A Branch & Cut Algorithm for the Resolution

of Large-scale Symmetric Traveling Salesman Problems, SIAM Review 33, 60–100.

16

