Exercise Set 7

Exercise 7.1. Let G be a graph and $T \subseteq V(G)$ with $|T|$ even. Prove:
(i) A set $F \subseteq E(G)$ intersects every T-join if and only if it contains a T-cut.
(ii) A set $F \subseteq E(G)$ intersects every T-cut if and only if it contains a T-join.

Exercise 7.2. Let G be an undirected graph, $T \subseteq V(G)$ and let $J \subseteq E(G)$ be a T-join of minimum cardinality. Denote by $\nu(G, T)$ the maximum cardinality of a family of pairwise disjoint T-cuts and by $\tau(G, T)$ the minimum cardinality of a T-join. Consider the properties:
(i) $\nu(G, T)=\tau(G, T)$.
(ii) There exist $|J|$ pairwise disjoint cuts $\delta\left(X_{1}\right), \ldots, \delta\left(X_{|J|}\right)$ with $\left|\delta\left(X_{i}\right) \cap J\right|=1$ for every i.

Show that (i) and (ii) are equivalent.

Exercise 7.3. Consider the Edge-Disjoint Paths Problem: Given two graphs $G=(V, E)$ and $H=(V, F)$, decide if there exists a family $\left(P_{f}\right)_{f \in F}$ of edge disjoint paths in G, where $P_{\{s, t\}}$ is an s-t-path. This problem is $\mathcal{N} \mathcal{P}$-complete even if $(V, E \dot{\cup} F)$ is planar.

Use this fact to show that it is $\mathcal{N} \mathcal{P}$-complete to decide, given some planar graph G and some $T \subseteq V(G)$, whether $\nu(G, T)=\tau(G, T)$ holds.

Exercise 7.4. The Undirected Minimum Mean-Weight Cycle Problem is the following: Given an undirected graph G with edge-weights $c: E(G) \rightarrow \mathbb{R}$, find a cycle C whose mean-weight $c(E(C)) /|E(C)|$ is minimum, or determine that G is acyclic. Consider the following algorithm for the Undirected Minimum Mean-Weight Cycle Problem: First determine with a linear search whether G has cycles or not, and if not return with this information. Let $\gamma:=\max \{c(e)$: $e \in E(G)\}$ and define a new edge-weight function via $c^{\prime}(e):=c(e)-\gamma$. Let $T:=\emptyset$. Now iterate the following: Find a minimum c^{\prime}-weight T-join J with a polynomial (black-box) algorithm. If $c^{\prime}(J)=0$, return any zero- c^{\prime}-weight cycle. Otherwise, let $\gamma^{\prime}:=c^{\prime}(J) /|J|$, reset c^{\prime} via $c^{\prime}(e) \leftarrow c^{\prime}(e)-\gamma^{\prime}$, and continue.

Show that this algorithm works correctly and runs in polynomial time. Also, explain how to the get the cycle to be returned in the case $c^{\prime}(J)=0$.

Exercise 7.5. For an undirected graph G, let P_{G} denote the spanning-tree polytope of G and

$$
Q_{G}:=\left\{x \in[0,1]^{E(G)}: \sum_{e \in E(G)} x_{e}=|V(G)|-1, \sum_{e \in \delta(X)} x_{e} \geq 1 \text { for } \emptyset \neq X \varsubsetneqq V(G)\right\} .
$$

Prove:
(i) $P_{G} \subseteq Q_{G}$ for every graph G.
(ii) There exists a graph G with $P_{G} \neq Q_{G}$.
(1+2 points)

Deadline: November $30^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws17/co_exercises/exercises.html

In case of any questions feel free to contact me at silvanus@or.uni-bonn.de.

