Exercise Set 8

Exercise 8.1. Let G be a graph. A 2-cover of G is a function $y: V(G) \to \{0, 1, 2\}$ with $y(v) + y(w) \ge 2$ for all $\{v, w\} \in E(G)$. The size of y is $\sum_{v \in V(G)} y(v)$.

If y is a 2-cover, the set $\{v \in V(G) : y(v) = 0\}$ is a stable set. Conversely, a stable set $A \subseteq V(G)$ determines a 2-cover y by setting

	0	if $v \in A$,
$y(v) = \langle$	2	if $v \in N(A)$,
	1	otherwise.

Prove:

- (i) The maximum size of a 2-matching in G equals the minimum size of a 2-cover of G, where the size of a 2-matching $f : E(G) \to \{0, 1, 2\}$ is $\sum_{e \in E(G)} f(e)$.
- (ii) G has a perfect 2-matching iff $|N(A)| \ge |A|$ for all stable sets $A \subseteq V(G)$.

(4 points)

Exercise 8.2. Let G be a graph, $b : V(G) \to \mathbb{N}$, and $c : E(G) \to \mathbb{R}$ a weight function.

- (i) Show that the uncapacitated maximum-weight *b*-matching problem in bipartite graphs can be solved in strongly polynomial time.
- (ii) Use Step (i) to show that the uncapacitated maximum-weight b-matching problem can be solved in strongly polynomial time if b is even.
- (iii) Use Step (ii) to show that the uncapacitated maximum-weight *b*-matching problem can be solved in strongly polynomial time.
- (iv) Use Step (iii) to show that the capacitated maximum-weight *b*-matching problem for edge capacities $u : E(G) \to \mathbb{N} \cup \{\infty\}$ can be solved in strongly polynomial time.

(8 points)

Exercise 8.3. Let G be an undirected graph and $T \subseteq V(G)$ with |T| = 2k even. Prove that the minimum cardinality of a T-cut in G equals the maximum of $\min_{i=1}^{k} \lambda_{s_i,t_i}$ over all pairings $T = \{s_1, t_1, \ldots, s_k, t_k\}$, where $\lambda_{s,t}$ denotes the maximum number of pairwise edge-disjoint s-t-paths.

(4 points)

Deadline: December 7^{th} , before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws17/co_exercises/exercises.html

In case of any questions feel free to contact me at silvanus@or.uni-bonn.de.